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I Background

*10% of the world’s babies are born
premature?

» 182 million+ data points a day

*Only a fraction collected and stored
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World Health Organisation, Preterm birth, fact sheet No 363, Geneva WHO, 2013. 2
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I Artemis Platform
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I Problem Characterization

* Apnoea of prematurity: Gap in breathing of more than 20 seconds?
* Hard to know that a baby iIs apnoeic

* Bed-side staff broadly classify any cardiorespiratory event as a

“Sl; ell”
» Specialists and extensive monitoring required to diagnosis

* An algorithm was developed that automated the classification of
neonatal spells?

* Neonatal Sepsis Is infection acquired In the hospital
* Interest In predicting sepsis using neonatal spells data

E V' 201 6 =~ 2] Thommandram A, Pugh JE, Eklund JM, McGregor C, James AG. Classifying neonatal spells using real-time temporal analysis of
urovis physiological data streams: Algorithm development. Point-of-Care Healthcare Technologies (PHT), 2013 IEEE. 2013. p. 240-3.




I Related Work
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ldentifying correlations across three physiologic data streams?

[3] Pugh E, Thommandram A, Ng E, McGregor C, Eklund M, Narang I, et al. Classifying neonatal spells using real-time temporal 5
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I Event Classification Algorithm

Absolute

Relative

Heart Rate

< 100 (Preterm)
< 80 (Term)

> 10% fall from 30s baseline

Respiratory Rate

> 20 seconds

Pause greater than two
breaths

Saturation

< 80% (Preterm)
< 92% (Term)

> 10% fall from 30s baseline
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I Events as Sequences
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I Task Analysis

Domain experts with at least five years of neonatal experiences were solicited.

* |dentify the Point of Suspicion of Infection (PSI)

[T1]

T2 ldentify events In the respiratory physiologic signal before PSI
T3 Analyse events across heart rate and oxygen (SpO,) streams
T4 ldentify abnormal events /
15 Create mental temporal map of underlying physiology
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Design of PhysioEX

Respiratory Impedance Graph Spells Classification
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I Kernel Density Estimation

18 sklearn, bw=0.05 skleamn, bw=0.1 sklearn, bw=0.2 skleamn, bw=0.5 sklearn, bw=1.0
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Kernels are aggregated and used to determine vertical binning

Frequency score generated for each vertical bins, and used to control opacity

Horizontal stacking for each hour of data
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I KDE Histogram to Temporal Intensity Maps
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Temporal Intensity Maps
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Highlight salience in physiologic events*

EU FOViS 201 6 @Q L1 SGCTE Confrencecn nlitien [4] Kamaleswaran R, et al. IEEE EHRVis. 2014, 12



Date (Day, Month)

03 05 =

01 05 —

29 04

13



Duration in Seconds

N

o

o
I

100

N W A
o O O
I L 1 1 1111l

—
-
L 1 11111

N

w
I

o °o®
P
o
g G
\ ®e i _/
- " A
s 205
b,
N Y
| | | | | | |
06 AM 12 PM 06 PM Tue 27 06 AM

Time 14



Central (56 Secs.) Time: July 25, 2010 04 PM
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I Expert Evaluation

 Participants: 4 domain experts

» Tasks: Exploratory Comparisons

* Treatment: PhysioEx and Stacked Bar Display

» Data Collection: Observation, Semi-structured interviews
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I Expert Evaluation

Generated counter evidence about the relationship between
neonatal spells and sepsis.

Subjective Feedback:
» Greater advantage to explain neonatal spells behaviour than the
alternative.

“now Inclined to invest a day In training a neonatal fellow so they would
be better able to describe physiological behaviour of spells”

» SequenceGraph provided a unigue ability to recognize patterns that
commonly occur at various times of the day— novel insight generated.

« Raw Data View closed the loop.
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Limitations:

» Tested PhysioEx with four domain experts.

* Results extend to a single tertiary teaching hospital in North America.
* Did not integrate clinical contextual data (nursing notes, dx histories).

Future Work:

* Develop an automated adaptive KDE algorithm to automate bandwidth
and threshold selections.

» Evaluate PhysioEX In other case studies involving larger participant
groups.
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I Take home message

* Interpreting non stationary and heavy-tailed waveform data streams is an
open challenge.

* One method is to use adaptive nonparametric models like KDE to expose
density.

* The Temporal Intensity Map was more descriptive than stacked bar.
* ‘Closing the loop’ a factor when novel tools introduced.
* PhysioEX Is a step towards addressing these problems.
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I Temporal Intensity Maps (construction)
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