
Test Reduction Visualization

UNDERGRADUATE HONOURS THESIS

FACULTY OF SCIENCE (COMPUTING SCIENCE)

UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY

Blair Wiser

SUPERVISORS:

Jeremy Bradbury

Christopher Collins

April 2016

2

Abstract

During the development of software it is important to maintain a comprehensive test suite to

ensure quality of the code produced. However, agile development calls for quick builds to enable

the iterative development that can quickly adapt to unpredicted circumstances. A great amount of

research has been done in order to find methods that optimize the quality of the project given a

small amount of time. One such way to optimize quality is through a test suite that has little to no

overlap in coverage. Since tests are run many times throughout the development of software it is

important for the process to be fast while still ensuring that all of the code is covered by tests.

We propose a tool that will aid a user through the process of reducing tests in a test suite. We

developed a tool that uses visualization techniques to show a representation of a test suite. The

tool uses mutation testing data to display to the user the mutant score of individual tests along

with how many of the mutants detected were uniquely killed by the test and how many mutants

were killed by other tests in the test suite. The tool uses a greedy algorithm to find subsets of the

given solution in order to optimize the mutant score with respect to the run time of the test suite.

Usage of this tool can overcome test case glut that can occur during development as more and

more tests are added to the project.

3

Table of Contents

1. Introduction 5

 1.1 Motivation ………………………………………………………………………….....5

 1.2 Goals ………………………………………………………………………………….5

 1.3 Stakeholders …………………………………………………………………………..6

 1.4 Thesis Overview ………………………………………………………………….......6

2. Background 7

 2.1 Test Suite Optimization ………………………………………………………………7

 2.2 Mutation Testing ………………………………………………………………….......7

 2.3 Unit Testing ………………………………………………………………………......8

 2.4 Software Visualization ………………………………………………………………..8

3. Implementation 9

 3.1 Architecture …………………………………………………………………………...9

 3.2 Input …………………………………………………………………………………..9

 3.3 Test Reduction Algorithm …………………………………………………………...10

 3.4 Visualization ……………………………………………………………………...…10

4. Results 13

5. Conclusion 16

 5.1 Limitations …………………………………………………………………………..16

 5.2 Future Work …………………………………………………………………………16

References 18

4

List of Figures

1. Examples of mutation

2. Test timelines

3. Test selection

4. Test tool tip

5. μJava mutant generation tool

6. Comparison of vertical scales

5

1. Introduction

The purpose of this thesis is to examine how visualization techniques aid in the task of

optimizing a test suite by removing redundant tests. We define a redundant test as a test that only

detects bugs which are detected by other tests in the test pool. With a large test set it can be

difficult to manually examine them to determine overlap between them. Through the use of

visualization techniques the user will be able to see how tests overlap at a glance. Evaluation of

tests to discover redundancy is done through mutation testing. Our tool displays the results of the

mutation testing process and suggests to the user which tests should remain and which tests

should be removed.

1.1 Motivation

Test suite optimization is an important aspect of agile development where testing is done many

times throughout the work day. However, we must be careful in the optimization process. There

is a natural tradeoff between the speed of the testing process and the test coverage. We must

balance both aspects. If the testing is not thorough enough, bugs will be left undetected which

will cause problems later in development. If the testing is not fast enough the process can cause

delays for the project. While there has been work done to automate the process of reducing tests,

little work has been done with visualization of the process. The user often has valuable insight

into the nature of the test data and that insight can be useful in the test reduction process.

Through a human in the loop system we believe the process of test reduction can be streamlined

and produce better results.

1.2 Goals

6

The goal of this thesis is to produce a prototype for a tool that aids developers in optimizing test

suites.

The goals of the tool are:

• Time and minimum score parameters to be set by user

• User can add or remove tests from the test pool

• System initializes with a solution based on input parameters

1.3 Stakeholders

The main stakeholders of the tool are developers with knowledge and intuition behind the code

and the test set to be optimized. The developer must also have some knowledge of mutation

testing practices in order to understand the evaluation of the tests. We aim to make the test

reduction process as easy and as painless as possible. Manipulating large data sets can often be

tedious so we must be aware of the requirements of the developers using this tool. Secondary

stakeholders are other individuals involved in the project that might view the visualization. The

visualization aspect of the tool must be intuitive and understandable. With stakeholders

identified we are able to evaluate the tool based on their unique requirements.

1.4 Thesis Overview

In section 2 background subject material will be identified and examined. An overview on

mutation testing and software visualization will be given along with the importance of optimized

testing in agile development. Section 3 covers the design and implementation of the prototype

tool, including a look at the work that serves as a basis for this thesis. Section 4 will examine the

resulting tool, how it is used, and how it helps development. Finally, section 5 will conclude with

a summary of what has been done and suggestions for future work.

7

2. Background

This section gives a brief overview of the different concepts that this thesis utilizes. Many of

these concepts come from software testing such as test suite optimization and mutation testing.

Software visualization techniques are also used to present the data.

2.1 Test Suite Optimization

Ten minute builds is a concept from agile development. It dictates that code should be built and

tested within a ten minute time period. This is because agile development calls for building and

testing to be done several times through a day. Because the testing process is done many times

throughout the day it must be an efficient process. In other words the test suite must be optimal.

There are three general approaches to optimizing a test suite. Test case reduction (also called

minimization) aims to identify and remove redundant tests from the test suite. Test case selection

seeks to identify which test cases are related to changes made in the base code and to change the

test cases accordingly, thus alleviating the buildup of test cases that tends to occur as

development progresses. Finally, test case prioritization reorders the test suite in such a way that

most errors are detected at the beginning of the testing process. This thesis focuses primarily on

the first method of test case reduction.

2.2 Mutation Testing

Mutation testing is used to evaluate the quality of tests. A program is mutated by making various

changes to it. The tests are then run on the original code and on the mutants. If the test gives

different output for the original code and the mutated code the test is said to have killed

(detected) the mutant. A test’s mutation score is the number of mutants it is able to kill. Mutants

8

are created through various means. A common way to create a mutant is to swap an operator for

another. Both arithmetic and logical operators can be swapped.

Figure 1: Examples of mutation

2.3 Unit Testing

Unit testing is a method of testing where individual blocks of code are tested. It is viewed as the

smallest testable part of the code. Unit testing is often done by using a test harness such as JUnit

for Java. Because of this, unit testing is very easy to automate. The benefits of unit testing have

been studied extensively [3] showing a decrease in defects early on in a project’s life cycle

decreasing the cost of fixing the defect later.

2.4 Software Visualization

Software visualization is the use of representing data as visual graphics in order to explore and

interpret it. It is often used to create graphical representations of programs, algorithms and

processed data. Its main challenge involves finding an effective way to represent these concepts

as visual graphics. However, when done correctly a visualization of data can make it much easier

to understand. Visualization helps people in finding patterns and relationships within data.

9

3. Implementation

The primary stakeholders of the tool are software developers so it is important for the tool to

integrate into a software development work flow with little frustration. The tool must also be

easy to learn and present information in a clear manner. Because of these requirements we

selected to implement the tool as an Eclipse plugin.

3.1 Architecture

The plugin consists of three parts. The activator serves as the basis for the Ecplise plugin

handling the life cycle as well as the integration of the other parts. The actions model the data

and perform operations on the data in response to the user’s actions. The view displays the data

to the user in a new panel created by the plugin.

A test result class was created to store all the data of how tests detected the mutants. The class

consists of an ID, the time it took a test to run, and three array lists representing which mutants

were detected. The array lists are

• Detected Mutants: a list of all the mutants detected by the test

• Unique Mutants: a list of mutants that were detected by the test first

• True Unique Mutants: a list of all mutants that are only detected by the test.

3.2 Input

The plugin reads in output from test cases run with JUnit. Each test’s output must be in its own

file. After the plugin reads a file it creates a test result object to store the mutants that it detects.

10

Once all the test files have been read the unique mutants and true unique mutants lists are

calculated for each test result.

3.3 Test Reduction Algorithm

We developed an algorithm that suggests to the user a test suite based on parameters input by the

user. The parameters input are the maximum time the test suite is allowed to take when run and

the minimum mutant score the test suite is allowed to have as a whole. The test score for the test

suite is defined as the sum of the unique mutants detected by each test plus the sum of the true

unique mutants found by each test. These parameters are stored in a configuration file in JSON

format which are then read by the tool. The algorithm takes a greedy approach to optimizing the

mutant score. First the test suite is pruned down to a size so that it meets the time constraint set

by the user. Tests are removed from the end of the list. Next a greedy switch is made. The

algorithm first finds the test in the test suite that detects the lowest number of mutants uniquely

by checking the size of its true unique mutant list. Next the algorithm finds the test in the unused

test group that detects the most number of mutants uniquely. Similarly to before, this is found by

checking the true unique mutant list of each test in the unused group. The final step is to swap

the found tests. The algorithm continues to make greedy swaps until a swap would result in a

lower mutant score.

3.4 Visualization

The visualization window consists of two timelines. The top timeline represents the test suite

while the bottom timeline is the group of unused tests. A single test is represented by a rectangle

on the timeline. Tests are displayed in the order that they are run in from left to right. The

rectangle’s width represents the time it takes to run. The height of the rectangle is the number of

11

mutants that the test detected. The coloured sections of each rectangle represent different

categories of mutant. The darkest blue section represents the unique mutants only found by that

test. The medium blue sections corresponds to the mutants that have been detected by this test

first and are detected by a test later on. Finally, the lightest blue portion is the number of mutants

detected that have already been detected by a test in the test suite. The tests in the unused group

are coloured as if they were at the end of the test suite timeline.

Figure 2: Test timelines

The user can select a specific test by clicking on a test in the timeline. Selecting a test allows the

user to visualize overlap between tests. When a test is selected sections of other tests in the

timeline are highlighted with a fuchsia and the selected test is outlined. Highlights indicate which

other tests are able to detect the mutants found by the selected tests. Using this feature the user

can quickly see how similar a test is to other tests in the test suite.

12

Figure 3: Test selection

More information about a test will be displayed when the user hovers the mouse over the test as a

tool tip. The tool tip contains the sizes of the mutants detected, mutants newly detected and the

mutants uniquely detected lists. The tool tip also displays the time it takes for a test to run.

Figure 4: Test tool tip

The user can remove tests from the test suite by right clicking on them. Once a test is removed it

will appear in the unused test group.

13

4. Results

An open source Java project was utilized to test the plugin. First, mutants were created from the

code by utilizing a tool called μJava. Using μJava a total of 159 mutants were created using 3

mutation operators.

Figure 5: μJava mutant generation tool

Next, tests had to be separated into their own files in order to separate the test results. A batch

script was used to run the tests. Each test had to be run on each mutant. A batch script was used

to use JUnit to run each test on all the mutants and writing the results to an output file for that

test. Once all the output files were prepared they were used as input for the plugin.

14

During testing we had to make a decision regarding the vertical scale of the bars. The total height

of the window is based on the maximum possible height that a rectangle can reach (the total

number of mutants). However, for the test data no single test discovers a large portion of the

mutants resulting in small bars. An alternative is to scale the maximum height of the window to

be the maximum number of mutants that is discovered by the tests plus some percentage of

buffer space. This approach results in bars that are overall larger and easier to see.

Figure 6: Comparison of vertical scales

15

The downside to this approach is that it is misleading at first glance. Until the user inspects the

results by hovering over the bars it appears that the individual tests are able to detect a large

portion of the mutants, which is not the case.

From the initial results we learn that it is possible to gain insight into the task of test reduction by

using visualization techniques. The visualization used makes it easy to see the overlap in test

coverage by selecting a test and highlighting the other tests that overlap with the current one. The

colour scheme allows the user to see how much each test is contributing by showing the unique

mutants and the number of mutants first detected by the test. As time goes on tests tend to

contribute less as previous tests will have caught most mutants.

The visualization could be further evaluated in a formal manner. In order to test its effectiveness

it should be used to in a real project. For comparison a second test suite should be maintained by

more traditional means. The tool’s usefulness will be measured by comparing the two test suites

after a set amount of development cycles. The development team could also be surveyed to get

their opinions on the tool and how useful they find it.

16

5. Conclusion

In summary, we set out to explore how visualization can aid in the task of test reduction. Starting

with an existing visualization aimed at test prioritization we extended it to work with real unit

testing data. In addition, we developed a greedy algorithm that is able to read real data and create

a suggested, minimized solution for the user. This tool is implemented as an open source Eclipse

plugin and is the main contribution of this thesis.

5.1 Limitations

The main limitation for this project was the use of a pre-existing project as a base. The previous

project was implemented in such a way that it was not easily extended. Most of the classes were

implemented as static classes in order for new data to be included. However, this caused

numerous issues when extending the code to use real data, such as when user parameters were to

be used by the algorithm instead of statically set values. Overall, implementing changes to the

existing code in order to correctly implement the functionally we needed took more time than

what was initially estimated and resulted in some planned aspects for the project to be

abandoned.

5.2 Future Work

A large amount of preprocessing of data is required by the user in the plugin’s current form. This

includes generating the mutants from the base code and running the tests against these mutants to

detect them. Ideally this processing would be done within the tool. Future work to make the

plugin a more user friendly experience should focus on automating the preprocessing for the user

Early on we had considered using a genetic algorithm to create the initial solution instead of a

greedy one. A genetic algorithm uses a process based on natural selection to iterate through

17

generations of possible solutions. High ranked solutions pass on traits to the next generation

while low ranked solutions are discarded. The implementation of a genetic algorithm is more

time consuming than a greedy one so we shifted focus in order to meet deadlines. While the use

of a genetic algorithm does not guarantee a better solution, we think it would be an interesting

experiment to implement a genetic algorithm for test suite reduction and compare its results with

those of the greedy algorithm implemented in our plugin.

18

References

1. Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel, “Test Case Prioritization: A

Family of Empirical Studies”, IEEE Trans. Softw. Eng. 28, 2, February 2002.

2. Yoo, S. and Harman, M., “Regression testing minimization, selection and prioritization: a

survey” Software, Testing, Verification and Reliability, March 2010.

3. Williams, Laurie, Gunnar Kudrjavets, and Nachiappan Nagappan. "On the effectiveness of

unit test automation at microsoft." 20th international symposium on software reliability

engineering. IEEE, 2009.

4. Eltoweissy, Mohamed, Matković, Krešimir and Gračanin, Denis, “Software Visualization”,

Innovations in Systems and Software Engineering, Septermber 2005.

