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Abstract

This thesis presents a novel marker-free method for identifying screens of interest when us-
ing head-mounted eye-tracking for visualization in cluttered and multi-screen environments.
The presented approach offers a solution for discerning visualization entities from sparse back-
grounds by incorporating edge-detection into the existing pipeline. The system allows for both
more efficient screen identification and improved accuracy over the state-of-the-art ORB algo-
rithm. To make use of this pipeline in visualization applications, a model is introduced to track
a user’s interest in rendered visualization objects by collecting the gaze data and calculating
the object group’s interest scores across selected visual features. With the interest model, We
offer an implicit gaze interaction system that provides subtle interaction supports to improve
group-of-interest objects visibility and to ease object selection in crowded regions of informa-
tion visualizations.

Keywords: gaze estimation; feature detection; attention modelling; implicit interaction; over-
plotting visualization
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1 Introduction

In previous years, many eye-tracking studies focus on collaborative environments where de-
tecting multiple displays and tracking the gaze on which screen is a known challenge [13, 60,

65]. In this context, to locate gaze on a screen, first the front view camera (see Figure 1.1b) im-
age is used to determine the location and identity of the screen in the field of view, and the eye
camera is used to determine the gaze point within the detected screen. Determining which dis-
play is the one of interest in cluttered, multi-screen environments in which the user is moving,
is the error-prone and rate-limiting step. In response to this, state-of-the-art systems use one of
two approaches. The first is to calibrate the eye tracker to the corners of the screen using ArUco
markers1 or enabling the eye tracker to easily identify the space of interest (e.g., screen itself,
a visualization, another application, etc.) in relation to the marked corners [37]. The second is
the ORB (Oriented FAST and Rotated BRIEF) feature detection algorithm which can extract
unique key points from corner or edges of a target image and match them with key points from
the interest area of the user’s gaze [82].

When combined with information visualizations, the first approach is inconvenient since
the markers could occupy the screen space and interfere with the visualization design. While
the second approach with visualizations, some characteristics, such as cluttered or sparse plot-
ting and white backgrounds, causes problems for feature matching of target acquisition. One
possible solution is to place a textured pattern behind the visualization so that the ORB algo-
rithm has sufficient visual features to discern the screen accurately. However, this approach can
interfere with visualization design.

Although various types of eye-tracking systems (eye-tracker device and application) exist,
they can be divided into two categories: diagnostic and interactive [29]. In human-computer
interaction, cognitive science, and information visualization, diagnostic eye-tracking studies
play an important role in quantitatively measuring people’s visual attention as they solve visual
tasks. For example, in a visual analytics study, an eye-tracker tracks a human subject who sits
in front of a computer screen and reports the gaze-positions on the screen. Researchers then
proceed to test their hypotheses by analyzing the collected data using visual and statistical ana-

1A synthetic square marker composed by a wide black border and an inner binary matrix which determines its
identifier.

1



1 Introduction

lytic techniques. Recently, a novel method (Data-of-interest (DOI) eye-tracking analysis) was
presented to analyze eye-tracking data (accumulated as a stream of 2D gaze-samples) by relat-
ing the gaze samples to visual contents on data visualization [2]. When compared to traditional
point-based or area of interest (AOI)-based analysis [8], the DOI method does not require to
manually relate eye-tracking data to the visual stimulus or defined AOIs after a user study. The
DOI instruments the visualization and can automatically map the gaze samples to data objects
on the screen in real time. To exploit the analogy with the AOI nomenclature, such eye-tracked
data objects are referred to as DOI. DOI analysis is able to answer many questions that tradi-
tional analysis approaches cannot, especially in experiments of significantly longer sessions and
operating in data space.

For gaze interactive systems, eye-tracking is used to change a graphical interface based on a
user’s visual attention, such as using eye-tracking as an alternative to pointing devices (e.g.,
mouse, touch interface) or text inputs. However, gaze interaction within complex systems
sometimes can be inefficient and error-prone since unintentional gaze fixations can interfere
with a system’s judgment about the intention of the user and trigger unintentional system re-
sponses. Also, holding the gaze on a point for a long time to explicitly activate a system compo-
nent can cause both mental discomfort and physical exhaustion. Thus the use of gaze for this
purpose has fallen out of wide use [34], and proved to be a bottleneck for designing advanced
gaze interaction.

To respond to these challenges, this work first studies the solution for target screen acqui-
sition on sparse visualization in a collaborative environment with multiple screens. Next, it
investigates the application of the DOI method to visual attention modelling in visual analysis.
Finally, we look into the use of gaze as a form of implicit interaction which can aid in using
information visualizations without requiring long dwell times nor triggering disruptive visual
changes due to unintentional gaze actions.

1.1 Motivation

Eye-tracking is a process of measuring human gaze behaviours and invaluable at explaining
how people perceive, solve visual tasks, and use interfaces [29] and used widely in psychol-
ogy and cognitive science to help researchers understand thought and affect mechanisms [79].

As eye-tracking technologies have become more portable, accurate, and inexpensive, it is pos-
sible for modern eye-tracking systems to precisely locate a user’s gaze on different display de-
vices (e.g., computer screens, projection screens, hand-held, andwearable displays) and classify
gaze actions by typical measures (e.g., fixation duration, fixation count, saccade length). This
presents an opportunity to revisit the use of gaze as amode of interaction. Our research interest

2



1.1 Motivation

(a) Remote Eye-tracker (Tobii2) (b) Head-mounted Eye-tracker (Pupil-core3)

Figure 1.1: Two different types of eye-tracking devices. Figure (a) is a Tobii remote eye-tracker calculat-
ing the eye’s position and gaze point on a computer monitor. For Pupil-core in figure (b), A
is the front view camera and B is the eye camera.

falls into this area, especially in eye-tracking methodology, visual attention modelling, implicit
gaze interaction and non-distracting guidance.

As the design space for gaze interaction extens from the development of eye-tracking tech-
nology, the potential of gaze used as an interaction input has increased as well. Compared to
traditional eye-tracking of a single user on one screen, scenarios with multiple users or screens
can also benefit from the gaze interaction. One example is to replace laser pointers with eye-
trackers to indicate locations among multiple screens in a collaborative working environment;
one can do that by removing a time-consuming step that requires the users to precisely spec-
ify which screen and what location they are looking at. In the aforementioned example, eye-
tracking not only allows users to understand each other by knowing the location of other’s gaze
point, but also to simplify and to improve the communication accuracy. To achieve that, it is
necessary to provide a reliable and robust system that guarantees the success of eye-tracking of
multiple users at the same time across multiple screens. Eye-tracking within data visualization
research, the data collected by the DOI method is highly granular with semantic content as it
is linked to the data that powers the visualization. In addition to that, DOI does not require
any human pre-processing, object viewing data can be collected and analyzed efficiently for
many topics, using interactive visualizations, for visual attention modelling, to narrow the gap
between the user and visualization.

2https://tech.tobii.com/technology/what-is-eye-tracking/
3https://docs.pupil-labs.com/core/
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1 Introduction

1.2 Contributions

The main contributions of this work are as follows:

1. A video processing pipeline for dynamic screen detection that can easily differentiate the
boundary of the target screen and the others, which enables a more efficient and fluid
experience.

2. An interest model to detect data-of-interest (DOI) and to predict a user’s groups-of-
interest (GOI); this model is informed by a gaze action detection algorithm and through
the abstraction of common features of data objects from multiple dimensions.

3. Two interaction techniques that use the interest model to proactively detect gaze actions
and respond with non-distracting and subtle support to tackle down classic visual ana-
lytic problems (e.g. information discovery, target selection), and improve the usability
and readability of data visualizations.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 discusses the previous research done on eye-
tracking methodology and gaze interaction design. We then proceed to provide a pipeline to
solve the problem of interest in Chapter 3. The proposed gaze-data based interest model is
described in Chapter 4. Chapter 5 discuss using gaze as explicit or implicit input for human-
computer interaction. Two applications of implicit gaze interaction were proposed to deal with
overplotting visualization and improve existing target selection methods on graphical-user-
interface. Chapter 6 proposes an evaluation plan with two studies for two implicit interaction
application on visualization. We conclude in Chapter 7 with limitations and future directions
for this research.

4



2 Related Work

There is a large unexplored design space at the intersection of visualization and gaze inter-
action because of previous technological constraints. To gain a better understanding of the
background behind choosing to focus on gaze interaction and information visualization, it
is necessary to review several current trends and research areas in the field surrounding eye-
tracking. The following chapter gives insight into the three basic thesis building topics: gaze
estimation on screen-based applications, attention modelling with eye-tracking data, and im-
plicit gaze interaction and application for data visualization.

2.1 Gaze Estimation on Screen-based Applications

A wide variety of eye tracking applications exist. They can broadly be categorized into di-
agnostic and interactive applications [29]. Interactive applications were initiated in the early
1980s [9] and further developed by Ware and Mikaelian [99]. A large number of novel applica-
tions has been proposed to use gaze information for improved interaction with screen-based
applications. In terms of gaze estimation on displays, they can be divided into two classifica-
tions: remote (i.e., eye trackers placed at a display) and head-mounted. Gaze interaction with
screens is mostly done through remote eye trackers and significant attention has been given
to applications that assist disabled people [43]. In our work, a camera frame pipeline is pro-
posed to detect contours of screens without using visual markers in advance and discern the
correct screen for gaze interaction with ORB feature detection, which increases the accuracy of
gaze estimation on visual content with large white space (e.g., information visualization) and
enhance the stability of screen calibration when a user moving his head in a multiple screens
collaborative environment.

2.1.1 Remote Eye-trackers

Remote eye-trackers can be used for interaction with attentive user interfaces [97] (e.g., gaze
contingent displays [30] and EyePliances [89]), on public screens [83], or multiple screens [87].

Accurate gaze estimation on displays remains a significant challenge — particularly when re-
mote eye trackers are used. They lack mobility and multiple user interaction since such track-

5



2 Related Work

ers only allow a single user to interact with a display at any point in time, and any interaction
is restricted to the tracking range of typically 50–80 cm in a central area in front of the dis-
play [91]. Previous work either focused on extending the tracking range of remote trackers [40,

70], or on calibration-free (spontaneous) interaction but was either limited to interaction along
a horizontal axis, i.e., without full 2D gaze estimation [103, 104] or required dynamic inter-
faces [98]. Dostal et al. developed a system for multi-user gaze estimation on a big screen [25]

and suffered from only being able to detect users when they stand separately facing the screen
and react based on the user’s proximity to the display. In this instance, eye-tracking is used to
make sure the user is looking at the screen but is not used to determine exactly where they are
focused. Stellmach et al. addressed the mobility (interacting from different positions/orienta-
tions) of users [92] by using an additional external tracking system. Later works used mobile
remote eye-trackers (e.g., GazeDrone [54], EyeScout [53]) for position and movement inde-
pendent gaze estimation on a large screen. Comparing to head-mounted eye-trackers, these
eye-trackers are too complicated and expensive to be deployed in real-world scenarios.

2.1.2 Head-mounted Eye-trackers

Head-mounted eye-trackers may be more flexible for this purpose as they allow the user to
move freely in front of the display. Early work on using head-mounted eye trackers for interac-
tion still required calibration to a single, stationary display prior to first use [31]. More recent
approaches aimed to estimate gaze dynamically but either required visual markers attached to
the display [5, 49, 102] or in the environment to detect gaze on predefined interaction areas, e.g.,
to control a TV set [12]. While simplifying detection, the visual markers are limited by the need
to place the markers on the objects. Both approaches require the display to be fully visible to
the scene camera, which cannot be guaranteed at all times in mobile settings. This is a strong
demonstration of the potential of this research area but is still limited by calibration issues.

With advances in computer vision, visual markers can be substituted with detecting the dis-
play directly in the scene camera’s field of view. Mardanbegi et al. detect screens based on
quadrilaterals found in the scene [65]. Turner et al. extended this tomultiple displays (based on
the displays’ aspect ratios) by adding a second camera and a method for transparently switch-
ing between two calibrations [96]. GazeProjector suggests using head-mounted eye-trackers to
automatically select feature points in a single calibration instead of screen borders for screen
calibration to obtain accurate gaze estimation across multiple displays, which is more robust
to changing light conditions and generalizes better to displays of arbitrary shape and size [59].

However, calibrating the screens based on their visual content may result in inaccuracy due to
lacking feature points on the often white screens or competition between multiple displays in
the view of a scene camera.

6



2.2 Spatial Relationships of Users and Displays

2.2 Spatial Relationships of Users and Displays

Tracking the spatial relationship of users can be done in two ways. First, external tracking
equipment can be used to determine a user exact position in 3D space (and thus its spatial
relationship to a display in the environment). The Proximity Toolkit makes use of such high-
precision tracking equipment and provides an interface to acquire spatial relationships [26, 66].

While such a setup results in extremely high accuracy, it is cost-consuming for deployment and
impractical for changing location frequently. Alternatively, the spatial relationship between a
user and a display can be identified by using a camera. Many approaches temporarily show
on-screen visual markers [94] or use dynamic markers following a camera’s position [77]. More
recently, natural feature tracking was used to determine spatial relationships. Herbert et al.
used a ScaleInvariant Feature Transform (SIFT) to determine the camera’s spatial relationship
to a display [41]. Their system tried to identify a screenshot of the display in the device’s camera
stream. Virtual Projection extended this approach to dynamically updated displays [6]. Touch
Projector further allowed for tracking multiple displays provided that display contents differ
sufficiently [10]. Based on these underlying concepts, GazeProjector applies progressive algo-
rithms FAST and FREAK (with their significantly improvedmatching accuracy [1]) to improve
the tracking efficiency by increasing the frame rate from 10 fps in Virtual Projection [6] tomore
than 20 fps. In our work, a reference contour comparison approach is offered and used to re-
duce the frequency of using complicated computer vision algorithms for screen calibration,
without reducing its accuracy. In Chapter 5, the relationship between the frame rate and the
resolution of a scene camera is discussedwith an experiment since the resolutionmay influence
both the accuracy of gaze estimation and the frame rate per second of the estimation.

2.3 Eye-tracking Data Analysis

Eye-tracking data is traditionally interpreted in the space of rendered visual stimuli where gazes
were recorded and used one of two analysis paradigms: point based or area of interest (AOI)
based [8]. Point-Based analysis methods treat each gaze sample as independent points while
AOI analyses aggregate gazes into areas of interest and operate at this higher level of abstraction.
The major disadvantage of these two approaches requires analyzers to relate point-based gazes
with the semantic contents or defineAOIs over stimulimanually after the recording. Hence, the
analysis process takes a prolonged timewhen the count of stimuli and visual contents increases.
What’s more, the process becomes prohibitively inefficient for interactive and dynamic stimuli
(e.g. video) since analyzers have to define AOIs for each frame of a video.
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Several solutions are proposed to overcome this weakness. One example is the automatic
AOI annotations using gaze clustering algorithms [28, 78, 85]. However, an increase of com-
plexity of visual contents in stimuli may increase the difficulty of the AOI annotation process.
Stellmach et al. proposed the object of interest (OOI) concept for 3D stimuli where eye-trackers
collect gaze points on the surface of 3D objects available in a scene [93]. Additionally, Steichen
et al. [90] and Kurzhal et al. [58] suggested the possibilities of dynamic AOI annotations in the
case of computer generated visual content. Sayeed et al. improved eye-tracking data analysis
with his method data-of-interest (DOI) by automatically detecting which data objects a user of
a visualization views [2]. As such, DOI is the mapping of gaze samples to data objects rather
than pure pixel positions, which can answer questions that AOI cannot since DOI data can
be significantly more granular and larger than AOI data. DOI can not only give visualization
scientists a convenient and fast way to analyze and understand the quality of visualizations but
also has a potential to model user’s attention to a visualization. However, it is still not enough
to tell a user’s attention just by knowing what data objects he has seen. We need a method
to distinguish and summarize the common feature from the collected data-of-interests to tell
what colour or shape of the or which location of the objects are user viewedmost. In Chapter 4,
a top-down approach is proposed that divides the data-of-interest into different groups by one
salient visual feature, and we refer to this method as group-of-interest.

2.4 Visual Attention Modelling

Modeling visual attention in images and videos has been an important area of research in psy-
chophysics, computationalmodeling and neurophysiology. Current attentionmodels generally
fall into two main categories: bottom-up approaches and top-down approaches. Bottom-up at-
tention models (stimulus driven) are based on the low-level features of the visual scene, while
top-down models (goal driven) are determined by phenomenons such task, goals, experience
and knowledge.

Seminal work by Koch andUllman [55] used a purely bottom-upmodel that decodes a scene
based on pre-attentive visual features (e.g. color, depth, and direction of motion) to create a
saliency map – a two-dimensional topological map that encodes conspicuity across the entire
scene. The central thesis of their work is salient features within a stimulus “stands out”, thus
attracting overt attention. They used a winner-take-all neural network to determine the most
salient locations, and defined rules for shifting the processing focus which can be biased by
proximity and similarity preferences. Much of the existing work on computational modeling
of selective attention have adopted the idea of bottom-up feature extraction and saliency map
(e.g. [44], [45], and [46]) to simulate human viewing behavior. Alvitta et al. proposed a mouse-
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click based hidden Markov model with the bottom-up approach for modeling and detecting
attention during visual data exploration and demonstrate how their method can be used to
predict future attending regions and actions [74].

Based on the DOI method and bottom-up attention approach, we contributed an interest
model to represent a user’s attention to salient features and related it in the form of scores pre-
senting different interest levels (we refer to as group-of-interest) to each group of data objects on
a visualization. This method improves the DOI method by automatically relating the DOI and
predefined data object groups to study further the user’s interestedness in the objects classed
by various salient visual features and insight into visualization.

2.5 Explicit and Implicit Interaction with Gaze

The eye tracker provides information about the location of the screen that the user is looking
at. Applications can use this data for explicit eye input that requires conscious control by the
user, or can use it as an implicit source of information, often in combination with other input
modalities (attentive user interfaces) [16].

In traditional human-computer interaction involving eye-tracking technology, gaze has al-
ways been used explicitly as a purposeful and attention-demanding control medium to engage
with computers and replace other control devices such as mouse or microphone to assist dis-
abled people. As the eye-tracking system improved and became inexpensive, gaze interaction
becamewidely studied and extended to various areas including (gaze guesture [23, 27, 49], target
selection [20, 91, 92, 101], screen attendance [25, 98, 103]).

As eye-tracking systems are getting increasingly capable of predicting the gaze location and
modeling attention with advanced analysis methods, implicit gaze interactions may proliferate
and partly replace explicit interactions. A public display that shows content when it senses
gaze from human presence or a recommendation engine that utilizes user actions for social
recommendations are typical examples [26]. In recent works, gaze is treated as an implicit input
to infer user’s attention or cognitive abilities for the system to dynamically adjust the interface or
representation of the visualization [21, 73, 90]. In this thesis, we contribute interaction designs
related to two different topics and support information access and discovery by improving the
readability and usability of the visualization with implicit gaze interaction.

The first topic is a classic problem of overwhelming information that comes from overplot-
ting visualizations, such as a scatter plot. Matejka et al. [67] offered a solution that dynamically
optimizes a value to change the scatter plot’s opacity as the data points increase. However, this
method can only alter the opacity of the data points globally bymanual adjustment, which ran-
domly sacrifices data points partly to show others. In our work, we contribute a visualization
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that can automatically and dynamically detect user-interested data points and raise them to the
top by interacting with implicit gaze input and conducting visual transition. The advantage
of our implicit interaction system is that it can provide non-distracting guidance to show the
information of interest to a user while the guidance is not being sensed by the user and keeps
the integrity of the visualization.

The second one is target selection, a basic task for acquiring graphical-user-interface (GUI)
components such as buttons, icons and menu options. With the increment in both size and
resolution of computer displays, it becomes less available and efficient for a user to acquire
small visual elements surrounded by multiple nearby objects on the large display with the tra-
ditional cursor techniques [51, 100]. One promising solution is the Bubble Cursor which can
dynamically adjust the cursor’s activation area until the closest target is captured [39]. This is
equivalent to expanding the boundary of each target to the Voronoi region with the target cen-
ter being the region center, so that the Voronoi diagram [69] defined by all targets fills the whole
screen space. To improve target selection performance, the state of art work tried to calculate
Voronoi tessellation based on the mouse movement to resize the effective area of the targets ac-
tively [19]. Mungguen et al. [20] improved Bubble Cursor by replacing the cursor from mouse
to gaze. Based on these two ideas, we contribute a Gaze Additive Voronoi Cursor that takes
gaze as implicit input as well as the cursor, changing the targets’ effective area according to the
gaze movement.
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3 Marker-Free Gaze Tracking Pipeline

Using eye-tracking technology to pinpoint gaze in multi-screen environments is a challenge
because first the display of interest must be detected, then the gaze point localized in screen
coordinates. One common solution is placing ArUco markers at the corners of a screen. An
ArUco marker is a synthetic square marker composed by a wide black border and an inner
binary matrix which determines its identifier (id) [36]. The black border facilitates its fast de-
tection in the world-camera image and the binary codification allows its identification and the
application of error detection and correction techniques. In the circumstance of visual design,
distraction is inevitable if ArUco markers are used, since the black square markers at the cor-
ners can divert the user’s attention and interfere visual consistency. To avoid this, the ORB
feature detection algorithm is used as an alternative approach, as it can detect the target screen
based on the content on it rather than the ArUco markers.

ORB is basically a fusion of the FAST keypoint detector [80, 81] and BRIEF descriptor [14]

with many modifications to enhance the performance. More detailed information of ORB is
introduced in Section 3.3. One of the main difficulties in implementing head-mounted eye
tracking with visualization is that the over abundance of white space often confuses the eye
tracking system during calibration and on-going real-time gaze tracking. One solution is to
place a textured pattern behind the visualization so that the ORB algorithm has sufficient visual
features to discern the screen accurately. Similar to the ArUco markers, this approach can
interfere with visualization design between points of interest and the background. Thus, we
want to avoid that.

In this thesis, we contribute a method for multi-screen detection that allows users to forego
ArUcomarkers and background textures in their visualizations. Thismethod is designed to im-
prove interaction times by removing a major step at the beginning of an engagement (marker
registration) and allows visualizations to appear as designers intendwithout the compromise of
manipulated background textures. Our method uses a pipeline approach to process data from
eye tracking glasses. The high-level overview is shown in Figure 3.1 and consists of preprocess-
ing to determine candidate screen contours in the world-view, ORB detection to determine the
correct screen, and transformations of the gaze point to visualization-relative coordinates.

11



3 Marker-Free Gaze Tracking Pipeline

Figure
3.1:O

urpipelinebeginsw
ith

the
eye-tracking

glassesproviding
a
video

fram
e
and

gaze
pointdata

to
ourprogram

.O
penC

V
Filtersareused

to
preprocessthefram

eand
detectscreen

contours,follow
ed

by
O
RB

featuredetection
and

referencecontourcom
parison

to
detectthecorrect

screen.Th
eidentified

screen
isused

forboth
calculating

thehom
ography

m
atrix

and
thenextfram

edetection.W
ith

them
atrix,gazepoints

are
transform

ed
from

2D
video

plane
to

2D
screen

plane.Finally,the
back

end
serverpassesthe

gaze
pointsto

the
w
eb

frontend
(show

ed
in

green
point).

12



Figure 3.2: An example of feature matching with the ORB algorithm [47].

Figure 3.3: An example of detecting a screen through ArUco markers using a mobile eye tracker [5].
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3 Marker-Free Gaze Tracking Pipeline

Collaborative environmentswheremore than one person isworking aroundmultiple screens
can also benefit from this method. By implementing our approach, researchers can design
applications that focus on:

1. Modelling visual attention of users.

2. Visual transition of style or representation on the data-object according to user’s atten-
tion.

3. Offering implicit gaze interactions.

4. Awareness and conflict in collaboration with eye-tracking technology.

3.1 Gaze Estimation and Calculation

For the eye-tracking software and hardware, Pupil Capture Software and Pupil Core Glasses
were used [52]. The Pupil Core has two cameras: the world-view camera records the scene in
front of the user and the eye camera is pointed inwards to capture eye movement. We chose
this type of input because our long term goal is a collaborative environment with multiple eye-
tracked users to produce dynamic interactions. The eye position (pupil) is detected in each
camera frame, using the Pupil Lab 2D algorithm, and the gaze position in the world camera
frame was estimated after a 5-point calibration. Both the world camera frame and the gaze
position are then sent to an open port that our software is listening on. The systemwe produced
can detect both big (wall-sized) and small (desktop) screens and is capable of recognizingwhich
screen the user is focusing their gaze on when multiple displays are present.

3.2 Candidate Screen Detection

In order to transform the gaze point from coordinates in the world view image to coordinates
relative to the target visualization, the contour of the correct screen needs to be detected. In
Figure 3.1, image filters fromOpenCV are used to pre-process each frame from the world cam-
era with the following steps: (1) Reduce video frame noise and detail with Gaussian Blur filter
(kernel size 3× 3). (2) Detect a wide range of edges in the video frame with the Canny Feature
Detection (see Figure 3.4). To counter various lighting environments, Canny Feature Detec-
tion’s threshold is adjustable when the system is working (in our case, with 3 as weight factor,
and a threshold from 50 to 80 performs best). Here, the Canny Feature Detection does not only
ignore the boundary of small objects but also keeps edges of screens. (3) Find contours (a list
of arrays that store coordinates of an edge). (4) Remove unqualified contours. Contours with
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3.3 ORB Feature Detection

Figure 3.4: A video frame with Canny Detection. The satisfied contours are highlighted with coloured
boundaries.

less than 3 edges and over 5 edges are discarded in this step since our target is 4-edged screens.
Contours with 3 or 5 edges are corrected to 4 edges with the approxPolyDP function from
OpenCV. If there is only one contour left from the pre-processing, the contour will be recog-
nized as the target screen and directly passed to calculate the homography matrix described in
the Section 3.5. Otherwise, the detected contours (see Figure 3.5) are then passed to the next
step. In addition, small contours with an area falling under a threshold percentage of the full
world-camera video frame (currently 10%) are discarded as they are likely too small for the
user to read.

3.3 ORB Feature Detection

The ORB algorithm is based on FAST (Features from Accelerated Segment Test) and BRIEF
(Binary Robust Independent Elementary Features). It increased their scale invariance and ro-
tation invariance — the image’s scale and rotation change do not affect the detection result in
ORB. FAST is used to detect key points (a pixel with surrounding pixels which satisfy a specific
condition) of an image or a video frame. Normally, key points are centred around blobs, edges,
and prominent corners. After FAST selecting the key points, BRIEF is needed to generate a
descriptor for each key point. A descriptor is a binary code of constant length, which stores
some characteristics about the keypoint. In this thesis, descriptors are the way to compare the
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3 Marker-Free Gaze Tracking Pipeline

Figure 3.5: A black and white image of detected contours. White spaces show the space of the screens
in this video frame.

key points between the front camera video frame and target screen frame for calculating the
homography. Figure 3.6 is an example: here (x1, y1) and (x2, y2) can be matched by com-
paring their descriptors since the descriptors are equivalent to each other and unique from the
image they belong to. In computer graphics, the nature of graphics transformation is matrix
multiplication. The screen’s content did not change from the left book to the right book, only
the scale and rotation changed. The left image pixel coordinates are multiplied by a matrix (H)
to transform into the right book’s pixel coordinates. Thus, thematrixH is the homography. We
will discuss more about homography in Section 3.6.

It has been shown in previous implementations that the ORB algorithm works well when
being used with photographs [59], but when the algorithm was tested with sparse visualiza-
tions such as scatterplots, the success rate dropped dramatically. The original algorithm suffers
from an abundance of mismatches between the video frame and the actual screen when using
information visualizations (see Figure 3.8). Those mismatches are not only detrimental to the
accuracy of the gaze point transformation but also slow the speed of the software. In response to
this, we designed a new method that uses ORB as a starting point. One of the main drawbacks
of theORB algorithm in this instance is that the system has a hard time deciphering images that
have a lot of uniformity (e.g. blank backgrounds). This is compounded when visualizations are
on the screen with many items that are not differentiated by size and colour. To address this
issue, our method is designed to restrict ORB detection to the contents of candidate contours

16



3.3 ORB Feature Detection

Figure 3.6: Same book in two images are related by homography [64]. Point (x1,y1), (x2,y2) and other
matched points are annotated by the same colour.

only, reducing the possibility of spurious feature matches in the world camera video stream.
This combination of computer vision and ORB has shown great potential for eye tracking and
sparse visualizations.

Consider two scenarios. The first scenario is data analysis with only one screen. In this case
there is no need to useORB since there is only one contour from the last step. The only detected
contour is recognized as the correct screen. The second scenario is there are multiple contours
were detected from the previous step. Ourmethod detects key points only from inside contours
one by one, drastically reducing mismatches.

Figure 3.7: A successful example of ORB feature detection and matching with a textured background
visualization. Showing a sample of matched keypoints.
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3 Marker-Free Gaze Tracking Pipeline

Figure 3.8: A failure example ORB feature detection andmatching with a large white space visualization.
Note the detected screen contour (white polygon) is incorrect.

3.4 Reference Contour Comparison

Computational cost is another problem with the original ORB algorithm, incurring latency in
interactive scenarios. To reduce this processing overhead, we have devised a way to reduce
the invocations of ORB. Our method compares the previous video frame’s output contour to
the current frame’s candidate contours. If a candidate contour’s central point is inside the last
frame’s output contour, it is selected for the homography transformation and ORB detection is
skipped. Otherwise, the ORB feature detection is used to match candidate contours to detect
the correct screen.

To prevent a compounding impact of an erroneous detection, ORB feature matching is run
every 10 frames irrespective of the reference contour comparison. ORB matching overrides
the reference contour matching when it runs. In testing, this was found to balance accuracy
against computational demand. Our system forwards the contour boundaries of the detected
screen in the frame to the next step in our pipeline, which will not only find the edges of the
screens but also find the correct screen in the frame.

3.5 Gaze Point Transformation

Since the user’s gaze point is relative to the world camera video, homography matrix [95] was
used to transform the user’s gaze location from the 2D world camera video plane to the 2D
screen plane given the corners of the screen contour in the frame. Given the screen-relative
gaze point, it is possible to identify which window the user is looking at on the correct screen
in multiscreen environments. Thus the gaze information can be passed to the correct program,
such as visualizations or other applications, for use populating interestmodels, gaze-interaction
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Figure 3.9: Our method is able to discern between multiple screens in space with low computational
overhead and recognize complex visualizations with large amounts of white space (a chal-
lenge when using head-mounted eye tracking glasses with visualizations). The blue frame
shows our screen detection, and the green dot shows the gaze point.

techniques, or other purposes. To process the real-time information a back end server was used
to capture the time, the user’s ID, and each individual user’s gaze data.

3.6 Demo

Our demo, shown in Figure 3.9, is built on an HTML front end with JavaScript. The demo
listens and collects the gaze data from our back end server. Each object in the web front end is
assigned an event handler to check if the user’s gaze is on it or not. When users are looking at
one object, the data model records this action, how long, when, which part of the visualization,
and which user is looking at it. Also, each object is given an attribute of which user currently
“owns” each object. This attribute gives us a lot of flexibility to design interactions between
multiple users.

3.7 Experiment

To analyze the performance of our method, an experiment was designed and run to test the
original ORB algorithm against our improved version using on-screen information visualiza-
tions.
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Table 3.1: Accuracy of screen detection by method and setup

Dense Visualization Sparse Visualization

Stable one screen Moving two screens Stable one screen Moving two screens
ORB feature detection 87.1% 0% 13.6% 0%
Our method 99.7% 96.5% 96.9% 90.9%

The experiment varied three factors: (i)The content of the visualization on the screen (sparse
visualization as in Figure 3.8 or dense visualization as in Figure 3.7). (ii) The screen detection
method (our method and ORB feature detection). (iii) The viewing context (stable one screen
or head and gaze moving slowly between two screens). In the two screen condition, the second
screen showed a distractor bar chart visualization as shown in Figure 3.9. With the three factors,
we have recorded eight videos with the pupil-core glasses in the lab with two monitors. The
measure for the experiment was the count of frames in which the target screen bounds were
detected correctly (all four corners of the target screen aligned correctly). This was assessed
manually by the lead researcher viewing each frame and counting the correct detections.

For each of the four conditions (one/two screen × sparse/dense visualization) we captured
raw video and eye-tracking data of a user looking at the target visualization on WSL (Windows
Subsystem for Linux). For each test, 500 frames of data were captured. This number of frames
was found to be sufficient to consistently differentiate methods. The output from the Pupil
cameras was post-processed twice: by our pipeline and the ORB algorithm alone.

As seen in Table 3.1, our method outperformed the original ORB algorithm while not re-
quiring ArUco markers or the need to add a textured background to break up the abundance
of white space. In particular, when the user’s gaze was moving between the two screens, the
ORB algorithm alone could not tell the difference between the screen with the active informa-
tion and the distractor.

Multiple resolutions were then tested with one and two users using our method to pinpoint
the limits of the scalability of our approach. Startingwithout the reference contour check (RCC)
(i.e., ORB on every frame), the results are shown in Figure 3.10. The performance decreased
dramatically with resolutions above 1280/720 (time per frame increased). If the ORB output is
checked every frame the entire approach is simply too slow. Based on these results the reference
contour comparisonwas added. Because users are often keeping their heads relatively still while
looking at visualizations, this consistency is relied on to skip ORB detection and increase the
overall speed of the system in the arrange case.
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Figure 3.10: Timing results of our method with and without the reference contour check (RCC). The
dotted gray line is the baseline for processing 30fps.

The speed increase is visible in Figure 3.10 where the blue and green lines (with RCC) are sig-
nificantly lower than the orange and purple ones (without RCC). Overall by using our method
which combines edge detection, ORB, and the heuristic RCC, efficiency and accuracy are im-
proved over the ORB alone.

Although using ArUco markers does not require as many steps as our method and it is faster
than our method, removing the extra display step is desirable for situations such as public vi-
sualizations where calibration is a barrier to engagement (deploy problem, occupy the screen
of visualization). Markers can also be visually distracting or aesthetically displeasing. Also,
our method can work perfectly even a screen is only partly visible to the front camera (see
Figure 3.11).

3.8 Collaborative Environment

In ourwork, a visualization can be programmed to showdifferent information to different users
because the system knows which user is wearing which eye-tracking headset and where they
are looking; this opens up new avenues for interaction based on individual user gaze.
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3 Marker-Free Gaze Tracking Pipeline

Figure 3.11: The half screen is detected by our method in blue rectangle.

Collaborative environmentswheremore than one person isworking aroundmultiple screens
can also benefit from this method. By implementing the approach, researchers can design
applications that focus on:

1. Modelling visual attention of users.

2. Visual transition of style or representation on the data-object on the screen.

3. Offering implicit gaze interactions.

4. Awareness and conflict in collaboration with eye-tracking technology.
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4 Gaze Data and Interest Model

Eye tracking studies in visualization research have provided insights into how people interpret
and interact with visualizations. The analysis of gaze behavior provides information about the
distribution of visual attention over time and visual strategies employed in interpreting a visu-
alization or in working with a complex visual analytics system. Typical measures derived from
gaze data are fixation duration, fixation count, saccade length, and numerous other aggregated
values [42]. All measures can be indicators for specific perceptual or cognitive aspects (e.g.,
cognitive load [38], working memory [75]) that are potentially interesting for the assessment of
a visualization.

In the beginning of eye-tracking analysis, gaze data were collected and interpreted as gaze-
coordinates in the space of rendered visual stimuli. Analysts usually related these data to the se-
mantic content of the stimuli offline by manually inspecting gaze heatmaps visually or defining
an area of interest (AOI) [8]. For studies involvingmany subjects, long sessions, and interactive
content, this process is inefficient. Researchers found that gaze coordinates can be related to
rendered visual objects in real time and yield an account of which objects a user views at any
given time since the content’s layout is known when being generated [2]. The output is a list
of granular data-objects users viewed at any time in an experiment (e.g., individual nodes in a
network, 3D objects in a scene) and refers to these objects as data-of-interest (DOI). As such,
the DOI approach can capture users’ data interests from interactive visualizations over long
periods of time. Moreover, DOIs are characterized by a rich set of attributes derived from the
data that the DOIs are defined on, and from the visual context in which they are displayed [48].

Modelling visual attention has been an important area of research in computational mod-
elling. Current attention models generally fall into two main categories: bottom-up approaches
and top-down approaches. Bottom-up attentionmodels (stimulus driven) are based on the low-
level features of the visual scene, while top-down models (goal driven) are determined by phe-
nomenons such task, goals, experience and knowledge. It is found that user’s attention is usually
attracted by a salient visual feature due to the type of the visualizations or the goal of tasks in the
studies [33]. The salient feature can be the shape, colour, label and location of rendered visual
objects on a chart or a trend (increase, decrease, peak, bottom), a region or specific values in
visualization data.
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4 Gaze Data and Interest Model

Figure 4.1: Field of view of human eye [105].

In this chapter, we propose a top-down approach that divides DOI into groups by one salient
visual feature for modelling and detecting user’s attention on groups of DOI during visual data
exploration. This allows us to study further the user’s cognitive state (especially the interest-
edness in the groups) and insight into visual stimuli. We refer to these groups as group-of-
interests(GOI). Another reason why choosing the top-down approach is that humans are born
to use gaze implicitly and this will be discussed in next chapter. Based on the top-down ap-
proach, amodel is designed that usesGOIs as input, calculates scores forGOIswith a customize
weight formula and predicts future attending targets or regions in complex and interactive vi-
sualization. We will demonstrate how this model can be used to improve the readability and
usability of the visualization by designing an implicit interactive system which can offer appro-
priate support or guidance to users in the next chapter.

4.1 Gaze Action

The definition of a gaze action is as follows: In a period of time, a discrete gaze movement from
one position to another above a threshold speed. The time interval is related to the frequency
of eye-tracker camera and the person’s eyes movement. The data provided by the eye-tracker
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4.1 Gaze Action

Figure 4.2: Peripheral vision of the human eye [106].

and our pipeline is a series of continuous x and y coordinates of the gaze location on the visual
stimuli, and the rate of the gaze input depends on the recording frequency of eye-tracker cam-
era. In the interest model, there is a listener constantly monitoring the coordinates of the gaze
point. For every new (x, y) gaze location input, the speed of the gaze movement (by degrees
per second) is calculated by measuring the moving distance and time interval between the last
and new gaze input and calculating their quotient. A minimum threshold distance is needed
to register a gaze action since the gaze data from the eye-tracker is unstable and varies slightly
during the detection. If there is no limitation for the distance, many repetitive gaze actions will
be counted and will influence user interest prediction accuracy.

Nevertheless, the model cannot examine how many visual rendered objects a user can see
with only a gaze location. A circular region should be set up to represent the user’s viewing
region on the screen. A person with normal vision can see objects within a field of about 180
degrees with both eyes when looking straight ahead [86], but much of this is peripheral. The
central 5 degrees seen by both eyes is called central vision, and it is central 8 degrees for para-
central vision. It is also known as “seeing” vision (see Figure 4.1 and Figure 4.2), because it
is the vision you use to look directly at something. To improve the interest model’s perfor-
mance, the model used 5 degrees as a parameter to compute a region of the central vision that
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4 Gaze Data and Interest Model

Figure 4.3: Region of central and paracentral vision on the screen. The left figure shows the region of
visions when distance d equals 60 cm, and the d for the right picture is 30 cm. On both
figures, the semi-transparent light blue circle is the region of paracentral vision. It is semi-
transparent deep blue for central vision. The black point inside the two regions is the gaze
point.

changes based on the user’s distance to the screen. From the definition of central vision, four
components are needed for calculating user’s central vision r (in pixels) on the screen:

(1) distance (d) between the user and the screen, (2) size of the screen, (3) resolution of the
screen, (4) angular size of the central vision.

With the d, angle central vision (α) and tangent function, we can obtain the radius of the
central or paracentral vision in centimetres on the screen (see Figure 4.3). Since the graphic
on the screen is essentially drawn in pixels, the size and resolution of the screen are needed to
transfer the radius from centimetres into pixels. In Formula 4.1, the radius is converted from
centimetres to inches by multiplying 0.393701. To convert inches to pixels, PPI (pixels per
inch) of the screen is needed. In Formula 4.2, PPI is calculated by the size and resolution of
the screen. di is the length of the screen diagonal by inches. wp and hp are the horizontal and
vertical resolution of the screen. Then, the interest model is able to search and check rendered
visual objects inside the central vision for each gaze action. The gaze action’s speed can transfer
from pixels per second to centimetres per second in the same formula but in the opposite way.

r = d× tan(α)× 0.393701× PPI (4.1)
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4.2 Object Selection

PPI =

√
w2
p + h2p
di

(4.2)

Gaze actions can be mainly classified into three types [61]. First, the slow period when the
gaze is more or less still and visual information taken in is referred to as a fixation, which is
characterized by low positional dispersion, low velocity, and a duration of about 200–300 ms.
Second, when the gaze is shifting from one position to another, the action is referred to as a
saccade, which is a very rapid movement with typical velocities ranging from 30 to 500 deg/s
and durations ranging from30 to 80ms. Last, when the observed objects aremoving, e.g., when
watching a dynamic scene, other gaze actions may occur that are related to the movement in
the scene. One such eye movement is the smooth pursuit. Knowing the type of gaze action
can benefit visualization researchers when designing interactive systems. These actions inspire
different strategies to make the system we built more efficient and robust.

4.2 Object Selection

After successfully detecting the gaze actions, a selection algorithm is needed for the interest
model to pick up the visually rendered objects that the user can see within the central vision
region for each gaze action. The interest model uses a customized selection algorithm for the
gaze to select the objects that the user is able to see. It is worth noting that the algorithm will
neglect objects that are occluded over a threshold percent and partly or hardly visible to the
user. There are two circumstances for the selection algorithm: (1) If one or more objects are
detected inside the user’s central vision in a gaze action, all the visible objects (not occluded) are
selected as the targets that the user saw during that gaze action (see Figure 4.4). (2) Similar to
the bubble cursor selector [39], for a gaze action with no objects inside the user central vision,
the algorithm will try to find the object with the shortest Euclidean distance to the gaze point.
The reason for handling the second scenario this way is due to the inevitable minor offset of
the gaze data provided by the eye-tracker or the pipeline. With the selection algorithm, the
interest model can still able to select objects with deviated gaze data in some situations. On the
other hand, a threshold is set to prevent the algorithm from selecting objects with unlimited
distance. The speed of the gaze action also plays an important role in the selection algorithm.
Gaze selection only works when the speed of the gaze actions is lower than 30 deg/s (e.g. a
fixation). For gaze actions over 30 deg/s, the interest model will discard the saccade actions
when calculating users’ preference on visual content since humans cannot attend to detailed
information near the gaze point while moving their eyes.
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4 Gaze Data and Interest Model

Figure 4.4: Visual objects selected (surround by red edge) within central vision by gaze (grey circle).
Occluded objects or objects outside the region have a black edge.

4.3 Interest Score Formula

In order to investigate gaze actions and the degree of interest (DOI) for the groups of visual
objects in a data visualization study, we created a mathematical formula to calculate an interest
score.

Sij =
ni

nall
× (log(ni) + 1)×

√
∆t× 1

dj + 1
(4.3)

As Formula 4.3 shows, four components contribute to the interest score (Sij) of one gaze
action. In the formula, i is the index of a group with visited objects that have the same salient
feature (e.g. visited dots with same colour). ni and nall means the number of objects from
group i and the number of all objects visited by that single gaze action. The ni divided by nall

is the proportion of group i to total visited objects. For ni, a group i with more visited objects
should receives a higher interest score. On the other hand, the increment of the interest score
should be flattened when ni increases significantly since human one-time memory is limited.
Hence, the logarithm is used for ni+1 to reduce the growth of the score and avoid a result of
zero when ni equals 1. For the duration of the gaze action, square root is applied on the delta
time t to reduce the weight contribution.

The interest score serves as the metric to represent the user’s interest level in a object group
with the same salient visual feature (e.g. points of the same colour). For a gaze action, themodel
will calculate an interest score for each group, which considers the proportion of a group to the
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4.4 Interest Score Calculation

total, the duration of the gaze action, the number of visited objects, the distance between the
objects and the gaze point.

The formula also takes the distance d between the gaze point and the readable object into
consideration since the distance is inverse to the interestedness of the user. People are naturally
more interested and focused on the center of the point they are looking at. The shorter the
distance, the more user is concentrated on the information provided by the objects. However,
group interest score is calculated, and the distance is varied for every single object inside the
user’s central vision. We offer a solution to this by choosing the smallest distance of a visible
object j in the group. As dj decrease, 1 divided by dj + 1 will increases and converge on 1 when
dj equals to 0.

4.4 Interest Score Calculation

The calculation of the interest scores for group-of-interest (GOI) is the core module of the in-
terest model. For a gaze action, the bubble-cursor-like algorithm selects a list of objects viewed
by the user, which are the data-of-interest (DOI)s. Then they are separated into groups by a
predefined salient feature (e.g. colour), and the interest model calculates the group interest
scores respectively. Next, these scores are stored in a map object and put into an array where
a sliding window counts total interest scores and generates a summary of user’s interest every
10 gaze actions. In Figure 4.5, the red bracket indicates a sliding window with a length of 10
gaze actions. By adding up all 10 gaze action interest scores by groups in the sliding window,
the interest model compares each group’s total score and selects the highest group as the user’s
current interest group. After obtaining the score at Time 1 and 3 or more subsequent gaze ac-
tions were detected, the sliding window shifted to Time 2 with a Moving Step and found the
next interest group of the user. To achieve an accurate result and avoid switching the result too
frequently, the interest model only changes when the groupwith the highest score is dominated
(50% higher than other groups) in sliding window counting.

The frequency of counting the interest scores (the moving step of sliding window) for GOI
is a question worth discussing. The higher the frequency is, the more the GOI is related to
the user’s immediate and short term interest in current visual stimuli. On the contrary, if the
frequency is set relatively low, the interest scores will represent the user’s longer GOI. The wise
way is to integrate the frequency with the use cases or the purpose of the tasks and then decide
the best solution. With the interest model’s result, the door to understanding the user’s interest
and reading experience about the visualized data and designing complex as well as natural
gaze interaction has opened. In the next chapter, two applications are introduced to evaluate
the usability and accuracy of the interest model.
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4 Gaze Data and Interest Model

Figure 4.5: A sliding window (in red bracket) with the length of ten gaze actions. After being full and 3
or more succeeding gaze actions input to the interest model. The sliding window shifts with
a moving step (blue bracket).
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5 Implicit Gaze Interaction

Gaze is widely used in psychology, cognitive science and visualization. In many studies [23, 27,

84], gaze worked as a direct control modality to work with interactive systems and fulfill task
goals. A person’s gaze point can be used in a variety of ways to control user interfaces, alone
or in combination with other input modalities, such as a mouse, keyboard, sensors, or other
devices. A major field within gaze interaction research is to find more efficient and useful
ways to facilitate human-computer interaction and explore novel user interfaces. However,
gaze interaction within complex systems sometimes can be inefficient and error-prone [34].

This makes users to gaze intentionally at items, which goes against innate way of using our
eyes. Examples can be found in recent research where gaze points and gaze gestures are used
to type or control a complicated user interface [57, 63, 71]. Before clarifying the problem in
depth and exploring an alternative path for gaze interaction design research, it is necessary to
understand the nature of human gaze behaviour and the difference between explicit interaction
and implicit interaction.

In most gaze interaction experiments, participants are asked to gaze directly and continu-
ously to fulfill a series of interactive tasks. This purposeful and attention-demanding way of en-
gaging with computers is referred to as explicit interaction, where the appropriateness depends
on the assumption that the user has conducted an action to achieve a specific effect intention-
ally. Using gaze explicitly is conflicted with our information retrieval process since unaware
and unintentional fixations can interfere with a system’s judgment about the intention of users.
Hence, users were asked to gaze steadily at things over a few seconds to reduce unintentional
fixation registrations and ensure their intention is successfully understood by the system [57,

63, 71]. Long-held gazes can cause both mental discomfort and physical exhaustion for users,
which is known as gaze fatigue [76], and thus their use is a bottleneck for designing advanced
gaze interaction.

Previously, it was thought that when the eye observed something, the mind also thought
about (“retrieved”) that object. This is called the “eye-mind hypothesis” [50]. However, more
recent research has challenged this, revealing that eyemovements say nothing about the under-
lying cognitive retrieval process, as the process controlling the switch in gazes is independent
of the process controlling retrieval [4]. In other words, we cannot assume that someone is pay-
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5 Implicit Gaze Interaction

Figure 5.1: Depiction of implicit (above) and explicit (below) ways of turning on the lights. The dashed
line shows an input–effect pair that is expected to be implicit. A common pattern in im-
plicit interactions is the co-occurrence (or bundling) of multiple effects as a result of the
same input, eliminating the need for additional actions. (Figure from the work of Serim and
Jacucci [88].)

ing attention to something just by knowing what they are looking at. There are several types
of gaze fixations. Fixations can be classified as an unaware (unconscious), such as randomly
gazing while thinking. They can be visually motivated (unintentional) fixations, such as look-
ing at something to see it, or interaction motivated (intentional) fixations, such as looking at
something to activate or select it.

In the last two decades, there is an increasing interest in exploring interactions that differ
from traditional explicit interactions. A term that is often used to represent these new types of
user engagements is implicit interaction, defined as the “user’s attitude towards an input–effect
relationship in which the appropriateness of a system response to the user input (i.e., an effect)
does not rely on the user having conducted the input to intentionally achieve it” [88]. In other
words, an action performed by the user that is not aimed to interact with a system for achieving
a specific result but such a system can understand the input and able to respond with effects.
For implicit interaction, appropriateness of a particular effect is instead understood from the
user input, but does not rely on the user’s intentionality. An input refers to any kind of data
that originates from the user and available to the system. An effect refers to any outcome that
is facilitated as a result of this user’s action or data that happened either with or without system
mediation. For example, walking into a room facilitates navigation in space, but can also cause
the light turn on in the presence of a motion sensor.

Implicit interactions often suppose the existence of a primary and intentional activity. Ob-
serving through the lens of multiple input–effect pairs, situations are translated in which an
input leads to multiple effects. Some of these effects are intended by the user and can explain
why the user has conducted the action in the first place. Other effects can be unintentional
but still appropriate for a given situation. The expected benefits of implicit interactions can
be attributed to the decreased user effort that is achieved through this bundling (Figure 5.2)
instead of an effect being unintentional. Considering gaze cannot always represent a user’s
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Figure 5.2: Diagram showing a gaze interaction that is designed to be implicit (dashed lines) within the
context of other interactions. (Figure from [88].)

Figure 5.3: Implicit gaze interaction (dashed lines) design in our work. An interest model is built based
on a user’s gaze input. Our interactive system detects the user’s shift in interest and provides
visual guidance or, combinedwith amouse click, and give invisible support to enhance target
selection.

attention and the gaze fixation often being unintentional (visually motivated) or unconscious
during information exploration, designing interactions that use gaze as implicit input should
be a more reasonable choice, which can provide a better interactive experience to users with
the combination of other interactions (see Figure 5.2).

The premise of this implicit gaze interaction is that the system needs to collect adequate
information from continuous gaze data for modeling the user’s attention and analyzing the
intention behind it. To better understand the user’s cognitive state and the attention of inter-
est to an information visualization, previous chapter has introduced a gaze-data based interest
model to analyze a user’s DOI (data-of-interest) and predict the preference for visual content
by calculating interest scores and comparing the GOIs (groups of interest). In the following
sections, several implicit interaction designs for information visualization are presented to in-
teract with gaze input. With the scores of group-of-interest resulting from the interest model
and indicating the degree of user’s attention on visual features, the goal of our designs is to im-
prove the usability and readability of the visualizations by responding with effects in the form
of visual guidance or non-distracting support, which allow users to interact more naturally and
comfortably with the visualization during the information discovery.
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5 Implicit Gaze Interaction

5.1 Guidance in Visual Analytics

In the process of visual analytics supporting information discovery, users that are typically ex-
perts in their domain but novices to visual analytics, are not always able to fully follow the
information delivered by a data visualization and complete analysis, due to the complexity of
tasks and style of the visualization. What parameters should be set for analytical computations
when suitable values are not clear upfront? How should analysts interpret visual representa-
tions of complex phenomena rather than plain information graphics? How to make proper
progress in terms of many things to control during the data analysis process? Guidance can
benefit these processes to help users gain a better insight into the data and narrow the gap that
hinders the effective continuation of the data analysis [15]. Majormodalities of providing visual
assistance include textual or visual channels such as size, font, colour, highlighting, and anima-
tion, which can provide different levels of salience depending on which type of visual signal is
applied. However, it is found that guidance systems can sometimes be harmful to the users [22].

For example, previous mixed-initiative systems will provide unnecessary help to users, which
could be overly interruptive and distracting. Besides, providing inappropriate assistance that
does not suit users’ needs and context may be disappointing [56]. Additionally, it could cre-
ate biases for analysts and lead the analysis down to an unhelpful, unimportant, or misleading
path which will cause them lose objectivity. For example, recommendation algorithms could
provide high similarity information to an analyst and keep him stuck in the same kinds of in-
formation group with one-sided or early conclusions, decreasing the probability to reveal new
data.

To prevent the guidance from being distracting and annoying to users, in the following sec-
tion we present an implicit gaze interaction design that supports visual analytics in a distinct
way by conducting subtle visual transitions (system’s response) outside the central vision. Since
gaze input is a reflection of users’ intention, offering non-distracting guidance or invisible sup-
port allows users to fully immerse themselves in the visual exploration without being inter-
rupted or spending time on confusing guidance. In the following section, our design is applied
to solving real-world problems by providing non-distracting support. To demonstrate the ef-
fectiveness of this idea, two demos were built to solve real-world problems, which are described
in Section 5.2 and Section 5.3. The scenario of the first application is high density and over-
plotted information visualizations such as scatter plots and maps. In the prototype, the interest
model generates recommendations with different levels of visual transition to improve the us-
ability and readability of scatter plots. The second application uses implicit gaze interaction
to improve the experience with existing interactive controls, especially for target selection. A
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5.2 Overplotting in Visualization

Figure 5.4: The interface of the overplotting scatter plot demo. On the top is the menu bar for various
settings. On the bottom is real-time gaze state information (speed and type). On the right
side below the menu bar is the interest scores for different colour groups.

study design is also purposed to evaluate our design compared to existing input device such as
mouse, touch screen, and combined with mouse-based interaction in Chapter 6.

5.2 Overplotting in Visualization

Overplotting is one of themost classic issues in data visualization [7]. It occurs when the dataset
is larger than the available visual space can accommodate. For example, the dots of a cluttered
scatter plot will tend to overlap, making the graphic hard for users to read. Visualization sci-
entists have attempted to solve this issue with various methods such as: decreasing dot size,
using transparent dots, sampling only a fraction of the data, providing interactive zoom, and
so on. These methods increase the readability of overplotting by making each dot more clear,
but it also reduces the readability in other aspects. For example, it is hard to recognize a semi-
transparent dot’s colour in a high-density area of overplotting [67]. Decreasing the size of the
dots may cause some dots to be barely visible to users, or make overlapping dots in the high-
density area even harder to find.

Although the trouble of overplotting cannot be completely eliminated, it is still possible to
reduce the complexity of overplotting by designing interactions so that users can proactively
adjust the style of visualizations as they want, such as highlighting a specific group of data to
bring it to the forefront. For example, scatter plot points are often associated with a categor-
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5 Implicit Gaze Interaction

Figure 5.5: Overlapping objects of the scatter plotwhere certain dots behind are hard for users to identify.

ical data dimension (country, flower, animal) which can be used to create groups which can
be interactively isolated. This categorical dimension is often encoded with a salient visual fea-
ture (colour, shape, size). A users’ reading sequence is not only decided by the spatial (x,y)
coordinate but also driven by the viewer’s task, goals, and prior experience, which is also of
tremendous importance in determining where a person will look in an image or a visualiza-
tion [68].

This requires users to observe complicated user interfaces and learn how to use the interac-
tion tools provided by the visualizations before or during the exploration. The preparation for
visualization interactions sometimes can be overwhelming and frustrating to a visualization
beginner or even an expert [11]. To leave out this time-consuming step and help users focus
more on the visualizations, we contribute an implicit gaze interactive system that brings groups
of points to the forefront of over-plotted scatter plots. The way the system processes implicit
gaze input allows users able to explore the visualization according to their interest or purpose
without any other intentional behaviours.

Our solution for improving the readability of over-plotted scatter plots is to conduct a visual
transition to dynamically raise the hidden dots of interest in the overlapping areas to the top.
Using the group-of-interest (GOIs), the idea is to bring the hidden dots to the front when the
user is interested in that group of data, allowing the user to efficiently examine thewhole dataset
group by group. Thus, the question has become when should the system change the rendering
order and which group of dots should be raised?

In the demo, we create an over-plotted scatter plot with the multidimensional Iris dataset [3,
35], using different colours to represent the various types of flowers. To make the demo sim-
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5.3 Improving Target Selection with the Gaze Additive Voronoi Cursor

ilar to real-world scenarios, additional flower samples have also been added to the dataset to
increase the data diversity as well as the complexity of the overplotting. The demo system used
the interest model from Chapter 4 to process the user’s implicit gaze input and obtain their
GOI. After detecting that the user’s GOI changed, the system will execute the visual transition
to change the rendering order of dots based on the user’s interest.

Since our purpose in designing the interactive visualization is to offer support as subtle and
non-distracting as possible, the visual transition is constrained by two conditions. First, a speed
limit to the gaze action is set for the transition. Since people do not pay attention to details
and have difficulty seeing visual transitions while moving their eyes, the scatter plot will only
change the rendering order of dots on the whole display if the user’s gaze speed is over 30
deg/s (i.e., detected as a saccade). Secondly, when the gaze movement is below 30 deg/s, the
visual transition will only occur outside the user’s central vision, to reduce the user’s possibility
of discovering it. Restricting the transition to areas outside the central region also reduces
the chance that something the user is currently examining will change while being examined,
which could be frustrating. In Figure 5.6, three images show where a user is looking, and the
gray circle is the central vision. The dots in the scatter plot from the first picture is the original
rendering order. By detecting the user’s group of interest in the second image, dots in purple
(Setosa) outside the user’s central vision were raised by our system to the top of other colour
group dots. The rest dots from the interest group inside the user’s central vision would rise
after the user’s gaze shifted to another position. Also, the user can use a mouse click to select
an individual dot to raise it to the top and indicate its information (e.g., colour, unique ID) by
showing a dialogue.

5.3 Improving Target Selection with the Gaze Additive Voronoi

Cursor

Target selection is a basic task for acquiring graphical-user-interface (GUI) components such
as buttons, icons and menu options. Most visual interactive applications, such as web browsers
and information visualizations, still require users to frequently select and interact with amouse
or keyboard. With the increment in both size and resolution of computer displays, it becomes
less available and efficient for a user to acquire small visual elements surrounded by multi-
ple nearby objects on the large display with the traditional cursor techniques [51, 100]. One
promising solution is the Bubble Cursor which can dynamically adjust the cursor’s activation
area until the closest target is captured [39]. This is equivalent to expanding the boundary of
each target to the Voronoi region with the target center being the region center, so that the
Voronoi diagram [69] defined by all targets fills the whole screen space (Figure 5.7).
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Figure 5.6: A screenshot of data objects’ rendering order from the over-plotted scatter plot during the
visual transition. It is noticeable that the dots from user’s group-of-interest (purple) inside
the user’s central vision (gray circle) won’t change until the gaze moved to the left bottom.
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(a) Euclidean distance (b) Manhattan distance

Figure 5.7: Voronoi diagrams under two different metrics [32].

To improve the performance of Voronoi tessellation in target selection, the state-of-the-art
technique uses a weighted Voronoi diagram [72] to replace the static Voronoi diagram. A
weighted Voronoi diagram in n dimensions is a generalization of a Voronoi diagram. The
Voronoi cells in a weighted Voronoi diagram are defined in terms of distance metrics (see Fig-
ure 5.7). In weighted Voronoi diagrams, each site (target) has a weight that influences the
distance calculation. The idea is that larger weights indicate more important sites, and such
sites will get larger Voronoi cells. All Voronoi cells from a weighted Voronoi diagram need to
be recalculated when a site’s weight changes. In an additively-weighted Voronoi diagram, in-
stead of only using the distancemetric asmeasurement to find out the closest target, weights are
subtracted from the distances and a target with a higher weight will occupy a larger Voronoi tes-
sellation. Jacky proposed the Additive Voronoi Cursor (AVC) [19], which changes the weight of
targets’ Voronoi cells and resizes their effective areas after the mouse movement switches from
the ballistic (moving towards a target) to correction (slow down and correct the final destina-
tion) phases. The overall target selection time is reduced since the correction cursormovement
becomes easier. However, the error rates of the AVC method increased while the amplitude of
the mouse movement was larger.

Inspired by this technique, we present the Gaze Additive Voronoi Cursor that combines the
additively-weighted Voronoi cursor and our gaze-based interest model. Subjoining a content-
aware weighting method for adjusting the weights of on-screen targets according to both the
pattern of gaze movement and the local target density as well as the distribution, our goal is to
provide a better target selection performance, which able to dynamically resize the effective ar-
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Figure 5.8: An example of the Voronoi scatter plot.

eas (Voronoi region) based on gaze location and result from the interest model. The advantages
of using gaze to support target selection are:

1. Normally before moving the mouse to select, the user must notify the target in advance
with a gaze [17]. Supporting by implicit gaze input, it is possible to offer the system
more time than just using a mouse to prepare the interaction, which increases the target
selection accuracy by speeding up the weighted Voronoi diagram calculation.

2. The Additive Voronoi Cursor may fail to predict the correct target when the amplitude
of the mouse movement increase, which is highly related to individual behaviour. Using
gaze is more natural for people than using a mouse [24, 62]. Eye movements between
points of fixation are ballistic; that is, no correction for errors in trajectory are made
while the eye is in motion [99]. In other words, using gaze for target selection is not only
more accurate than mouse but also removes a step in the selection algorithm.

3. The on-screen targets are not always isolated from each other in real-world cases. If there
are connections between the targets, the interest model can be used to detect group-of-
interest and resize the interest group’s effective areas for the selection, which is possible
to improve the accuracy of selecting interested targets for the user. In Figure 5.9, the
Voronoi tessellation (reachable area) of each target changed based onweight contribution
from not only the user’s fixation but also the result from the interest model.

After illustrating the benefit of our Gaze Additive Voronoi Cursor, it is also important to
design proper implicit interaction behind the target selection to improve the experience for

40



5.3 Improving Target Selection with the Gaze Additive Voronoi Cursor

(a) Voronoi tessellation when the user interested in the orange group.

(b) Voronoi tessellation when the user interested in the pink group. In the red square, the pink group
targets’ reachable regions were expanded by AGVC, which increase the success rate for user access-
ing pink targets. It is noticeable that the purple dot’s regions were reduced, but the user can still
select them by directly clicking.

Figure 5.9: Dynamically changing the weighted Voronoi tessellations according to user’s different inter-
ests to groups of targets in real-time.
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Figure 5.10: Reachable region of targets under weighted Voronoi tessellation.

users. Although users can select a target by clicking on its Voronoi region without moving the
mouse directly on it, it is still necessary to constrain the target selection with a maximum dis-
tance between the mouse and the target inside the weighted Voronoi region (See Figure 5.10).
This is because if there is no distance limitation for target selection, incorrect selective actions
may be detected due to users’ unconscious clicks on the space area. In Figure 5.10, several or-
ange targets with their own weighted Voronoi region segmenting by black line are inside pink
circles. The pink circle is the actual reachable region for targets that allow the user to select.
The reachable region of the three targets in the middle are indicating with colour red, blue and
green.

The success rate of target selection in high target-density area could be lower than a space
with sparse targets since the high density requires higher accuracy ofmouse clicks. To solve this
issue, Gaze Additive Voronoi Cursor in high-density targets area uses a strategy where a target
A could have an effective area containing other target B (see Figure 5.9b). In this situation,
the reason why target B stays inside target A’s reachable region without having its own one is
because target B’s weight may be much smaller than target A and the space around the target B
is closer distance-wise to target A according to the calculation of the additive weighted Voronoi
diagram. But the user can still select the target B by directly clicking on it. The Gaze Additive
VoronoiCursor can increase the accuracy of target selection in both sparse and crowded regions
of targets.
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We have built two demonstration applications based on our two different implicit interaction
designs with Pupil-core glasses or Tobii eye-tracker. The demos are based on web-front d3.js
visualizations and a back-end node.js server. Due to the Covid-19 pandemic, in-person stud-
ies and evaluations are not permitted currently. In lieu of a study and results, here we present
the planned methodology to evaluate each of the applications. The study plans focus on un-
derstanding the impact of the gaze interest model and visualization adjustments based on the
model on the efficiency of data analysis and the level of distraction for the user.

6.1 Participants

The study will take place in the Human-Centred Computing Lab at Ontario Tech University,
to provide for control of the experimental conditions. According to previous work [74], we
will recruit 30 participants who are using a computer and have normal or corrected-to-normal
vision. Participants will be screened for colour vision deficiencies. In the future, we will use
power analysis to determine how many participants are needed to detect a difference of a spe-
cific amount between conditions in our studies.

6.2 Apparatus

The required equipment for the studies: (1) A 16-inch laptop, (2) Pupil-core glasses or Tobii
eye-tracker, (3) Mouse.

6.3 Procedure

There will be at least one investigator supervising and only one participant for each session. We
will provide a paper instruction about the various precautions of the studies at the beginning.
Next, the study supervisor will set up the eye-tracking device and lead a screen calibration for
the participant. In order to avoid the influence of light factors on the study results, we will
make sure the light setting for all participants is the same. Then we will open the demo and
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ask the participants to follow the guidance inside the demo. Each session will run for an hour
and consist of two sub-studies as the following sections. During the session, we will record
the screen and collect the participant’s gaze and mouse data. The demo we provide will also
measure the time spent and the interest model’s result in each task. At the end of the study,
the participant will be asked to answer questions and provide feedback. We will analyze the
measurements and evaluate the accuracy and usability of our implicit gaze interaction design.

6.4 Study Interface

Our proposed application aims to present an adaptive visualization that automatically reacts
to the implicit gaze input from users to help them explore the visualization. The study inter-
face presents the state of the gaze input and output from our interest model, which will show
information that the user might be interested in, without distraction, by conducting subtle
gaze-enabled visual transitions or improving target selection accuracy by resizing the reach-
able region with Gaze Additive Voronoi Cursor.

First, the intermediary program from Chapter 3 takes and processes the gaze input from the
eye-tracking devices (Pupil-core glasses or Tobii eye-tracker) and pushes it to a network port
where the study application is listening. The study interface takes a series of gaze inputs and
the interest model calculates and generates the interest scores based on the participant’s past
gaze actions. The gaze data is fed into the interest model as user vectors and the interest scores
of each object groups for each prediction is displayed on an exploratory analytics interface.

We had some initial criteria for designing our interface based on the gaze input, different
settings and modalities for the interest model and the implicit interaction system. Because
our studies only need participants to finish tasks by using their eyes to read and mouse to
interact with the data objects from a visualization, simplicity and intuitive design were key. A
straightforward way is needed for users to understand the goal of the task, and an intuitive
way to display the gaze action information and interest level with the visualization content and
control variables.

We went with a single-page design with three components: menu bar, interest scores, and
gaze state bar. In the menu bar, the investigator can change settings such as: the visibility of
user’s gaze point and objects that selected by gaze, the frequency of calculating the interest
score. Since we need to compare the effectiveness with or without our implicit interaction in
the evaluation, the interface is designed so the implicit interaction can be toggled. The interest
scores are present at the right top corner showing the participant’s interest level to the group of
objects on the visualizations. The gaze state bar at the bottom shows the type and the speed of
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the participant’s current gaze action. The design and selection of each component are described
in Figure 6.1.

6.5 Study 1: Non-distracting Support for Occlusion Mitigation

In this study, the demo that provides non-distracting support for participants is going to be
evaluated. Without visual guidance or support, participants can easily be stuck into their early
bias and ignore important content before going through all the information in the visualization
reading task. Thedemo in this studywill collect the implicit gaze input fromparticipants. It will
calculate the interest scores and predict the group-of-interest based on the past gaze actions.
Using this, it will provide non-distracting support to benefit participants to obtain information
quickly and entirely in visualization reading tasks.

There are several questions that this study need to be answered from this study.

(a) Can our non-distracting support improve the speed of reading a cluttered scatter plot?

(b) Can our non-distracting support improve the readability of the over-plotted scatter plot?

(c) Can our interest model correctly predict participants’ attention?

(d) Is our implicit gaze interaction non-distracting?

To answer questions (a) and (b), at the beginning of the study, the participants will be as-
signed to one of two groups with counterbalancing to carry out several tasks – reading data
objects from a specific group or a group sequence. The first group will used the systemwith the
non-distracting support, and the second group will have no gaze support. To determine whether
our implicit interaction will distract the participants or not, the first group also needs to be split
further into two subgroups with visual transition everywhere or outside the foveal region.

The data we plan to collect for each task are: the reading time, logged results from the interest
model, and the answers to questions after a reading task. In order to minimize the interference
of unrelated variables, the distribution and colour of the group information on the visualization
is generated randomly.

Reading tasks will suggest specific actions, such as ‘Review all the purple points to find if
there is a trend.’ Participants will be asked to complete the task as quickly and accurately as
possible, and to press a button when done (to stop the timer). After the completion of each
reading task, we will ask several questions, focusing on the distribution of the whole data set or
group information in a specific area, as well as a single data object. In addition, the participant
will be asked questions related to what they saw on the visualization such as: the distribution
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6.6 Study 2: Gaze Additive Voronoi Cursor for Target Selection

of a group that the participant was assigned to review, or a specific dot from the group but the
participant have not seen. Here are example questions which could be used after the reading
task:

Q1. Were you able to read all information?

Q2. What is the distribution of the purple group?

Q3. Have you noticed there is a dot at (x,y) location?

Q4. Did you notice any changes in the visualization? How do you think of changes and the
mechanism behind them?

By measuring the completion time of the reading task for each participant, we can use the
task as factor to run a comparative study and use inferential statistics to analyze the data to
answer the question (a). From participants’ feedback of Q1 to Q3, we can answer the question
(b). By manually verifying the interest model’s result with the task goal, question (c) can be
answered. Participant responses to Q4, grouped by different visual transition regions (every-
where or outside foveal region), will answer (d), the degree of distraction from implicit gaze
interaction.

6.5.1 Alternative Interface: Maps

A map demo (see Figure 6.2) has also been built as an alternative option to this study since it
is related to a real-world scenario. We randomly picked a crowded area in Toronto and used
the Google Maps API to collect data of different types of point-of-interest (POI) such as bus
stations, government buildings, groceries, hospitals, restaurants, subway stations in this region.
This interface could also be tested to evaluate non-distracting support to help users to locate a
target place in a cluttered map.

6.6 Study 2: Gaze Additive Voronoi Cursor for Target Selection

In this study, we will test the performance of our Gaze Additive Voronoi Cursor (GAVC) on
target selection tasks. There are two concerned questions need to be answered in this study.
First is comparing the mouse-based additive Voronoi cursor and gaze-based additive Voronoi
cursor: which is faster and more accurate? The second question is the effectiveness of using
group-of-interest to improve the success rate for a user selecting type-related or content-related
targets such as buttons from a menu or data objects from the same colour group.
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6.7 Expectations from the Evaluation

We can simply separate participants into two groups by the cursor technique (GAVC and
AVC) for the first question. The demo will randomly highlight a target after each selection.
Participants will be asked to select as many targets as possible within a certain period of time,
like 5 minutes. In order to compare with the AVC, the GAVC will neglect the weight con-
tribution from the interest model and focus on pure gaze movement, just like AVC rely on
mouse movement. We will measure the number of selected targets and the error rate. Then,
the average number of targets and error rate will be calculated for comparing gaze-based and
mouse-based additive Voronoi cursors.

For the second question, participants can be divided into two groups with the interest model
on or off. They will be asked to select all targets from a group several times. The measurement
is similar to the first question. By comparing the average time and accuracy between the two
groups, we can find out if the interest model is playing an important role in the information-
related target selection.

6.7 Expectations from the Evaluation

In the first study, it is expected that non-distracting support will improve the speed and accessi-
bility of the reading tasks since the visualization can bring dots from the user’s group-of-interest
to the front to remove the blindfold of overlapping. The key to the study’s success or not is the
accuracy of the interest model can model and predict the participant’s interest or not. Nor-
mally in a region where the density of dots is low and the groups are isolated to each other, the
interest model can work pretty well. However, in the situation where the interest model works
in a high-density area where dots from different groups are overlapping each other, the perfor-
mance of the model still remains uncertain. It is hard for the system only to use gaze to discern
if a participant is focusing on an overlapped dots in a crowded area that are partly visible. One
solution is to use a mouse to hover only the partly visible dots, but this requires objects with
enough size on the visualization and high precision mouse movement from the participants.
For the second study, it’s more direct and easy for us to examine the performance and usability
of the GAVC by measuring the error rate and time spend for each trial of selection task.

There is an interesting question for implicit gaze interaction that have not been fully test, ver-
ified or discussed before: Does implicit interaction become explicit when the user understands
what is happening? At this moment we can only say it depends how well the user understand
what is happening. For example, the participants might have a chance to notice the visual tran-
sition of dots from the group-of-interest outside the foveal region in the first study. Before they
find out there’s a relationship between the visited dots and the visual changes where the rest
from the same group also are raised to the top, we think it is still implicit interaction. But as
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the participants understand the visualization can bring the dots to the front and start making
use of this mechanism, the interaction has become explicit. For the second study, if the par-
ticipants are never told that the effective area of targets are changing based on how they move
their eyes. It will be implicit interaction forever. This question is worth discussing since us-
ing implicit interaction in an explicit way would be slower than just designing an appropriate
explicit interaction to achieve the same result.
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7 Conclusions

This chapter discusses the contributions, work limitations, conclusions and some ideas for pos-
sible future work directions for this research.

7.1 Contributions

One of the contributions is our video processing pipeline that innovates by combining a con-
tour detection algorithm with an ORB feature matching algorithm to maximize the accuracy
of a user’s gaze estimation across multiple screens. The pipeline can automatically adapt to the
incoming gaze data from the eye-tracker and smoothly differentiate the boundary of the target
screen and the others, which reduces the cost of time of gaze estimation and improves the inter-
action experience by removing a step – marker registration. This also provides an opportunity
for visualization specialists to design visualizations suitable for gaze interaction but does not
need to sacrifice the design space for gaze estimation.

Furthermore, the result of the gaze estimation from our video processing pipeline was fed
into our interest model based on the data-of-interest (DOI) method and a top-down approach.
By relating the detected gaze action and salient features ofmultiple dimensions on the visualiza-
tion, this model calculated the interest scores for group-of-interest (GOI) with a mathematical
formula and predicts future attending object targets or regions in data visualization.

Finally, an implicit gaze system interaction was designed and implemented based on the
video processing pipeline and the interest model result from users’ continuous implicit gaze
input. The implicit interaction systemworks by providing non-distracting guidance to improve
the usability and readability of the visualizations, which allow users to interact more naturally
and comfortably with the visualization during the information discovery. However, whether
the system provides the intended benefit must be determined through a future experiment.

An evaluation plan is also prepared in Chapter 6 that this implicit gaze interaction system
can be studied in different use cases, such as information access based on changing rendering
order of objects on visualization and target selection like clicking a button.
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7.2 Limitations and Future Work

7.2.1 Prediction with Machine Learning

To successfully predict the user’s gaze location and targets of interest, we chose a traditional
computer vision algorithm (contour detection algorithm and ORB feature detection) and built
an interest model with a mathematical weighted formula rather than using machine learning
methods. While machine learning becomes more competitive, the depth of deep learning neu-
ral networks and computational cost grew exponentially. When choosing machine learning as
a method to solve the problems we face, it is necessary to carefully determine the probability
of making a fuss over a trifle. Sometimes simple methods can achieve better results. As far as
the current situation is concerned (the results achieved by our method), the use of machine
learning will not offer us a big step forward but likely slow down our progress since we need to
train machine learning models and optimize them. A drawback of machine learning is that it
requires a significant amount of training data for a competitive performance, which can easily
annoy or frustrate users. Nevertheless, recentwork has proved there is a huge potential between
machine learning and gaze interaction [18]. In future work, we can use machine learning algo-
rithms to train a model with a deeper and more complicated framework for gaze estimation or
predicting targets of interest that users will interact with.

7.2.2 Interaction Across Multi-users

Several implicit interaction designs have been proposed in previous chapters to benefit people
from roaming information on the visualization. We believe our methods can also be extented
to scenarios wheremultiple users are interacting with a visualization system. For implicit inter-
action that provides guidance or support acrossmulti-users, interference and sharing of system
response information from the interaction is our main consideration. It’s a trade-off between
conducting visual transition inside the foveal vision to protect other users and reducing the
distraction by disturbing others. Unlike the design for a single user, the subtle guidance or
support should only be visible to the related user when their gaze is joined together rather than
being outside the foveal vision since exposing personal or customized data from the guidance
to another user may cause confusion or privacy risk. On the other hand, designing gaze inter-
action with multiple users can benefit simultaneously and collaborative information discovery.
For example, when the interest model finds out two users share the same interest in a data
group, the overplotting visualization could bring it to the front with different visual effects, or
the jointed gaze becomes a lens to zoom in location of their fixation.
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Figure 7.1: When the axis detected fixation (in pink circle), it showed the object and the value that the
user just viewed with red text.

7.2.3 Other Types of Tasks and Visualizations

In our implicit gaze interaction design, we used a winner-take-all method to determine a user’s
attention — group of interest (the group with highest interest score from interest model). The
reason for this is we are using implicit interaction, and the user must have a goal in the study.
Otherwise, the implicit gaze input will become meaningless. What should the result look like
in an open-ended task? This question cannot be answered at this moment. In some condition,
it is possible to have a user who is interested in two different groups and the interest scores are
close to each other. If our system only provides guidance to the winner group, it could create
bias or mislead the user. One hidden direction of implicit interaction research is to analyze and
study joint interest or attention. Another direction is to find out the perfect size of the interest
scoresmovingwindow and themoving step. These require studies withmore complicated tasks
and measurement designs.

Also, this work only focuses on implicit gaze interaction with scatter plot visualization on
middle-size screens. Suppose we extend the interaction to other sizes of screens such as large
public displays or mobile phones. The designs can be totally different. Although existing im-
plicit interactions have only included basic visualization (e.g. line graph, scatter plot, charts)
and user interface. It is believed that the opportunities of using the gaze interaction combin-
ing advanced visualization and different types of tasks are enormous. We have some initial but
interesting ideas related to the axis of charts with gaze interaction (see Figures 7.1 and 7.2).
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Figure 7.2: After a user fixed on a location (in pink circle) for several seconds, a reference axis would be
shown to help the user read the values of the dots.

7.3 Conclusion

Our screen acquisition pipeline, gaze-data-based user interest model and implicit gaze interac-
tion system are all promising steps towards ensuring gaze estimation success as well as improve
the experience of visual analytics from a computer vision and human-computer interaction
perspective. Our method is able to discern the target display that the user is looking, calculate
an accurate gaze estimation, and feed the gaze data into an interest model to predict user’s at-
tention to data objects on visual stimuli. This may improve information readability and target
accessibility of visualization.

Without a formal evaluation of our system, it is difficult to say that the current implicit in-
teraction designs is successful in terms of interacting with the interest model and supporting
information access and target selection in a meaningful way.

However, due to the Covid-19 pandemic we can only provide a prepared study plan to eval-
uate our method when the situation is back to normal. In summary, we were able to predict
accurate gaze estimation across multiple screens, model user attention in the form of interest
and design and implement an implicit gaze interaction system that supports user’s visualization
discovery and target selection.
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