
Eye Tracking for Target Acquisition in Sparse Visualizations
Feiyang Wang

feiyang.wang@ontariotechu.ca
Ontario Tech University

Oshawa, Ontario

Adam James Bradley
adam.bradley@ontariotechu.ca

Ontario Tech University
Oshawa, Ontario

Christopher Collins
christopher.collins@ontariotechu.ca

Ontario Tech University
Oshawa, Ontario

Figure 1: Our method is able to discern between multiple screens in space with low computational overhead and recognize
complex visualizations with large amounts of white space (a challenge when using head-mounted eye tracking glasses with
visualizations). The blue frame shows our screen detection, and the green dot shows the gaze point.

ABSTRACT
In this paper, we present a novel marker-free method for identify-
ing screens of interest when using head-mounted eye tracking for
visualization in cluttered and multi-screen environments. We offer
a solution to discerning visualization entities from sparse back-
grounds by incorporating edge-detection into the existing pipeline.
Our system allows for both more efficient screen identification and
improved accuracy over the state-of-the-art ORB algorithm.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods;HCI design and evaluation methods; • Computing
methodologies→ Image processing.
KEYWORDS
HCI, computer vision, gaze detection, Multi-user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7134-6/20/06. . . $15.00
https://doi.org/10.1145/3379156.3391834

ACM Reference Format:
Feiyang Wang, Adam James Bradley, and Christopher Collins. 2020. Eye
Tracking for Target Acquisition in Sparse Visualizations. In Symposium
on Eye Tracking Research and Applications (ETRA ’20 Short Papers), June
2–5, 2020, Stuttgart, Germany. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3379156.3391834

1 INTRODUCTION
In the field of eye-tracking research, gaze target acquisition when
using head-mounted eye tracking glasses in a multi-screen environ-
ment is a known challenge [Mardanbegi and Hansen 2011]. In this
workflow, to locate gaze on a screen first the world-view camera
image is used to determine the location and identity of the screen
in the field of view, and the eye camera is used to determine the
gaze point within the detected screen. Determining which display
screen is the one of interest in cluttered, multi-screen environments
in which the user is moving is the error-prone and rate-limiting
step. In response to this, state-of-the-art systems use one of two
approaches. The first is calibrating the eye tracker to the corners of
the screen using ArUco markers (a synthetic square marker com-
posed by a wide black border and an inner binary matrix which
determines its identifier) so that the eye tracker can easily identify
the space of interest and know where the borders of the screen
are [Garrido-Jurado et al. 2014]. The second is the ORB (Oriented
FAST and Rotated BRIEF) feature detection algorithm which can

https://doi.org/10.1145/3379156.3391834
https://doi.org/10.1145/3379156.3391834
https://doi.org/10.1145/3379156.3391834


ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany Wang, Bradley, Collins

Figure 2: The flowchart of our pipeline. The eye-tracking glasses provide video frame and gaze point data to our program.
Various filters fromOpenCV are used to preprocess the video frames and detect screen contours. Our coremodule ORB feature
detection and reference contour comparison can detect the correct screen. The identified screen is used for both calculating
the homography matrix and the next frame detection. With the matrix, gaze points are transformed from 2D video plane to
2D screen plane. Finally, our back end server passes the gaze points to our web front end.

extract unique key points from a target image and match them with
key points from the interest area of user’s gaze [Rublee et al. 2011].
When it comes to using the ORB with information visualizations,
the sparse plotting and often white backgrounds cause problems for
target acquisition. One solution is to place a textured pattern behind
the visualization so that the ORB algorithm has sufficient visual
features to discern the screen accurately. However, this approach
can interfere with the visualization design.

In this paper, we contribute a method for multi-screen detection
that allows users to forego ArUco markers and background textures
in their visualizations (see Figure 1). This significantly improves
interaction times by removing a major step at the beginning of
an engagement (marker registration) and allows visualizations to
appear as designers intend without the compromise of manipulated
background textures. Collaborative environments where more than
one person is working around multiple screens can also benefit
from this method.

2 RELATEDWORK
There is a large unexplored design space at the intersection of
visualization and eye tracking because of technological constraints.
Several projects have addressed this crossover space in previous
work, but all have been hampered by these roadblocks. Dostal
et al. developed a system for multi-user markerless real-time eye
tracking on a big screen [Dostal et al. 2014] and Zhang et al. have
studied spontaneous interaction between users and displays in
public spaces by directing users into the tracking range [Zhang
et al. 2014]. Both of these systems suffer from only being able to
detect users when they stand separately facing the screen and react
based on the user’s proximity to the display. In this instance, the
eye detection is used to make sure the user is looking at the screen
but is not used to determine exactly where they are focused. To
enable full marker-free yet precise gaze tracking for information

visualization evaluation and interaction, we need reliable screen
and gaze point detection, ideally for multiple people and screens.
Our system can do just that.

Novel approaches at understanding different users and their
gaze have been presented in the past but many need to calibrate
using screen markers. Barz et al. [Barz et al. 2018], Jungwirth et
al. [Jungwirth et al. 2018], Kasprowski et al. [Kasprowski and Hare-
zlak 2018] and Zhang et al. [Zhang et al. 2016]. all use marker-based
display detection in their work. This is a strong demonstration of
the potential of this research area but is still limited by calibration
issues. In our work, a visualization can be programmed to show
different information to different users because the system knows
which user is wearing which eye-tracking headset and where they
are looking; this opens up new avenues for interaction based on
individual user gaze.

3 METHODOLOGY
Our method uses a pipeline approach to process data from eye
tracking glasses. The high-level overview is shown in Figure 2 and
consists of preprocessing to determine candidate screen contours
in the world-view, ORB detection to determine the correct screen,
and transformations of the gaze point to visualization-relative co-
ordinates.

3.1 Gaze position Detection and Calculation
For the eye-tracking software and hardware, Pupil Capture Software
and Pupil Core were used [Kassner et al. 2014]. The Pupil Core has
two cameras: the world-view camera records the scene in front of
the user and the eye camera is pointed backwards to capture eye
movement. We chose this type of input because our long term goal
is a collaborative environment with multiple eye-tracked users to
produce dynamic interactions. The eye position (pupil) is detected
in each camera frame, using the Pupil Lab 2D algorithm, and the



Eye Tracking for Target Acquisition in Sparse Visualizations ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany

Figure 3: A successful example of ORB feature detection and
matching with a textured background visualization.

Figure 4: A failure example ORB feature detection and
matching with a large white space visualization. Note the
screen contour (white polygon) is incorrect.

gaze position in the world camera was estimated after a 5-points
calibration. Both the world camera frame and the gaze position are
then sent to an open port that our software is listening on.

3.2 Candidate Screen Detection
In order to transform the gaze point from coordinates in the world
view image to coordinates relative to the target visualization, the
contour of the correct screen needs to be detected. For this, we
use image filters from OpenCV to pre-process each frame from
the world camera with the following steps: 1. Reduce video frame
noise and detail with Gaussian Blur (kernel size 3 × 3). 2. Detect
a wide range of edges in the video frame with the Canny Edge
filter. To counter various lighting environments, Canny Edge filter’s
threshold is adjustable when the system is working (in our case,
with 3 as factor, and a threshold from 50 to 80 performs best). Here,
the Canny Edge filter does not only ignore the boundary of small
objects but also keeps edges of screens. 3. Dilate the edges with a
morphological rectangle (4 × 4) to keep the integrity of contours
since Canny Edge filter might fail to provide a complete edge of a
object. 4. Find contours (a list of arrays that store coordinates of an
edge). 5. Remove unqualified contours. Contours with less than 3
edges and over 5 edges are discarded in this step since our target
is 4-edged screens. Contours with 3 or 5 edges are corrected to 4
edges with the approxPolyDP function. Detected contours are then
passed to the next section. In addition, small contours with an area
falling under a threshold percentage of the full world-camera video
frame (currently 10%) are discarded as they are likely too small for
the user to read.

3.3 ORB Feature Detection
It has been shown in previous implementations that the ORB algo-
rithm works well when being used with photographs [Lander et al.

2015], but when we tested the algorithm using sparse visualizations
such as scatterplots, the success rate dropped dramatically. ORB
is basically a fusion of FAST (Features from Accelerated Segment
Test) key point detection [Rosten and Drummond 2005, 2006] and
BRIEF (Binary Robust Independent Elementary Features) descrip-
tors [Calonder et al. 2010] with many modifications to enhance the
performance. First, it uses FAST to find key points on both world
camera video and an input stream of the target screen image, then
applies the Harris corner measure to find the top 𝑁 points among
them (see Figure 3). The original algorithm suffers from an abun-
dance of mismatches between the video frame and the actual screen
when using information visualizations (see Figure 4). Those mis-
matches are not only detrimental to the accuracy of the gaze point
transformation but also slow the speed of the software. In response
to this, we designed a new method that uses ORB as a starting point.
One of the main drawbacks of the ORB algorithm in this instance
is that the system has a hard time deciphering images that have
a lot of uniformity (e.g. blank backgrounds). This is compounded
when visualizations are on the screen with many nodes that are not
differentiated by size and color. To address this issue, our method
is designed to restrict ORB detection to the contents of candidate
contours only, reducing the possibility of spurious feature matches
in the world camera video stream. This combination of computer
vision and ORB has shown great potential for eye tracking and
sparse visualizations.

3.4 Reference Contour Comparison
Computational cost is another problem with the original ORB al-
gorithm, incurring latency in interactive scenarios. To reduce this
processing overhead, our method compares the previous video
frame’s output contour to the current frame’s candidate contours. If
a candidate contour’s central point is inside the last frame’s output
contour it is selected as a homography transformation and ORB
detection is skipped. Otherwise, ORB feature detection is used to
match candidate contours to detect the correct screen.

To prevent a compounding impact of an erroneous detection,
ORB feature matching is run every 10 frames irrespective of the
reference contour comparison. ORB matching overrides the ref-
erence contour matching when it runs. In testing, this was found
to balance accuracy against computational demand. Our system
forwards the contour boundaries of the detected screen in the frame
to the next step in our pipeline.

3.5 Gaze Point Transformation
Since the user’s gaze point is relative to the world camera video, we
use a homography matrix [Szeliski 2010] to transform the user’s
gaze point from the 2D world camera video plane to the 2D screen
plane given the corners of the screen contour in the frame.

Given the screen-relative gaze point, it is possible to identify
which window the user is looking at on the correct screen in multi-
screen environments. Thus the gaze information can be passed to
the correct program, such as visualizations or other applications,
for use populating interest models, gaze-interaction techniques, or
other purposes. To process the real-time information we use a back
end server to capture the time, the user’s ID, and each individual
user’s gaze data.



ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany Wang, Bradley, Collins

Table 1: Accuracy of screen detection by method and setup.

Dense Visualization Sparse Visualization

Stable one screen Moving two screens Stable one screen Moving two screens
ORB feature detection 87.1% 0% 13.6% 0%
Our method 99.7% 96.45% 96.9% 90.86%

Figure 5: Timing results of ourmethodwith andwithout the
reference contour check (RCC). The dotted gray line is the
baseline for processing 30fps.

3.6 Front End Display
Our demo, shown in Figure 1, is built on an HTML front end with
JavaScript. The demo listens and collects the gaze data from our
back end server. Each object in the web front end is assigned an
event handler to check if the user’s gaze is on it or not. When
users are looking at one object, the data model records this action,
how long, when, which part of the visualization, and which user
is looking at it. Also, each object is given an attribute of which
user currently “owns” each object. This attribute gives us a lot of
flexibility to design interactions between multiple users.

4 EVALUATION
To analyze the performance of our method we designed and ran an
experiment to test the original ORB algorithm against our improved
version using on-screen information visualizations.

The experiment varied three factors: 1. The content of the visu-
alization on the screen (sparse visualization as in Figure 4 or dense
visualization as in Figure 3). 2. The screen detection method (our
method and ORB feature detection). 3. The viewing context (stable
1 screen or head and gaze moving slowly between 2 screens). In the
2 screen condition, the second screen showed a distractor bar chart
visualization as shown in Figure 1. The measure for the experiment
was the count of frames in which the target screen bounds were
detected correctly (all four corners of the target screen aligned
correctly). This was assessed manually by viewing each frame and
counting the correct detections.

For each of the 4 conditions (one/two screen × sparse/dense vi-
sualization) we captured raw video and eye-tracking data of a user
looking at the target visualization on WSL system. For each test,

we captured 500 frames of data. This number of frames was found
to be sufficient to consistently differentiate methods. The output
from the Pupil cameras was post-processed twice: by our pipeline
and the ORB algorithm alone.

As seen in Table 1 our method outperformed the original ORB
algorithm while not requiring ArUco markers or the need to add
a textured background to break up the abundance of white space.
In particular, when the user’s head was moving between the two
screens, the ORB algorithm alone could not tell the difference be-
tween the screen with the active information and the distractor.

We then tested multiple resolutions with one and two users using
our method to pinpoint the limits of the scalability of our approach.
Starting without the reference contour check (RCC) (i.e., ORB on
every frame), the results are shown in Figure 5. The performance
decreased dramatically with resolutions above 1280/720 (time per
frame increased). If we check the ORB output every frame the entire
approach is simply too slow. Based on these results we added the
reference contour comparison. Because users are often keeping
their heads relatively still while looking at visualizations, we rely
on this consistency to skip ORB detection and increase the overall
speed of the system. The speed increase is visible in Figure 5 where
the blue and green lines (with RCC) are significantly lower than
the orange and purple ones (without RCC). Overall by using our
method which combines edge detection, ORB, and the heuristic
RCC, efficiency and accuracy are improved over the ORB alone.

Although using calibration markers is faster than our method,
removing the extra calibration step is desirable for situations such
as public visualizations where calibration is a barrier to engagement.
Markers can also be visually distracting or aesthetically displeasing.

5 CONCLUSION
In conclusion, we have presented a method that outperforms the
ORB algorithm in target acquisition onmultiple screens without the
need for ArUcomarkers. Our System can detect multiple user’s gaze
points in visualization-relative coordinates in real-time. It also can
detect multiple screens and recognize the correct screen with our
ORB feature detection and reference contour comparison module.
Future work will be focused on the design space with this system.
There are several things that can be done: 1. Custom information
access for users. 2. Personal preference on style or representation on
the object on the screen. 3. Awareness and conflict in collaboration
with eye-tracking technology.

REFERENCES
Michael Barz, Florian Daiber, Daniel Sonntag, and Andreas Bulling. 2018. Error-aware

gaze-based interfaces for robust mobile gaze interaction. In Proc. ACM Symposium
on Eye Tracking Research & Applications. ACM, Article 24, 10 pages. https://doi.
org/10.1145/3204493.3204536

https://doi.org/10.1145/3204493.3204536
https://doi.org/10.1145/3204493.3204536


Eye Tracking for Target Acquisition in Sparse Visualizations ETRA ’20 Short Papers, June 2–5, 2020, Stuttgart, Germany

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. 2010. Brief:
Binary robust independent elementary features. In Proc. European Conference on
Computer Vision. Springer, 778–792.

Jakub Dostal, Uta Hinrichs, Per Ola Kristensson, and Aaron Quigley. 2014. SpiderEyes:
Designing attention- and proximity-aware collaborative interfaces for wall-sized
displays. In Proc. ACM Conf. on Intelligent User Interfaces. 143–152.

Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and
Manuel Jesús Marín-Jiménez. 2014. Automatic generation and detection of highly
reliable fiducial markers under occlusion. Pattern Recognition 47, 6 (2014), 2280–
2292.

Florian Jungwirth, Michael Haslgrübler, and Alois Ferscha. 2018. Contour-guided
gaze gestures: Using object contours as visual guidance for triggering interactions.
In Proc. ACM Symposium on Eye Tracking Research & Applications. ACM, Article
Article 28, 10 pages. https://doi.org/10.1145/3204493.3204530

Pawel Kasprowski and Katarzyna Harezlak. 2018. Comparison of mapping algorithms
for implicit calibration using probable fixation targets. In Proc. ACM Symposium
on Eye Tracking Research & Applications. ACM, Article Article 11, 8 pages. https:
//doi.org/10.1145/3204493.3204529

Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: An open source
platform for pervasive eye tracking and mobile gaze-based interaction. In Adjunct
Proc. ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing. ACM, 1151–1160.
https://doi.org/10.1145/2638728.2641695

Christian Lander, Sven Gehring, Antonio Krüger, Sebastian Boring, and Andreas
Bulling. 2015. GazeProjector: Accurate gaze estimation and seamless gaze interac-
tion across multiple displays. In Proc. ACM Symposium on User Interface Software &
Technology. ACM, 395—-404. https://doi.org/10.1145/2807442.2807479

Diako Mardanbegi and Dan Witzner Hansen. 2011. Mobile gaze-based screen inter-
action in 3D environments. In Proc. Conf. on Novel Gaze-Controlled Applications.
ACM, Article 2, 4 pages. https://doi.org/10.1145/1983302.1983304

Edward Rosten and Tom Drummond. 2005. Fusing points and lines for high perfor-
mance tracking. In IEEE Int. Conf. on Computer Vision, Vol. 2. IEEE, 1508–1515.

Edward Rosten and Tom Drummond. 2006. Machine learning for high-speed corner
detection. In European Conf. on Computer Vision. Springer, 430–443.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In Proc. Int. Conf. on Computer Vision. IEEE
CS, 2564—-2571. https://doi.org/10.1109/ICCV.2011.6126544

Richard Szeliski. 2010. Computer Vision: Algorithms and Applications. Springer Science
& Business Media.

Dan Zhang, Darius Coelho, and Klaus Mueller. 2016. Google Glass for personalized
augmentations of data visualizations. In IEEE Visualization (Posters).

Yanxia Zhang, Jorg Muller, Ming Ki Chong, Andreas Bulling, and Hans Gellersen. 2014.
GazeHorizon: Enabling passers-by to interact with public displays by gaze. In Proc.
ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing (Ubicomp). 559–563.

https://doi.org/10.1145/3204493.3204530
https://doi.org/10.1145/3204493.3204529
https://doi.org/10.1145/3204493.3204529
https://doi.org/10.1145/2638728.2641695
https://doi.org/10.1145/2807442.2807479
https://doi.org/10.1145/1983302.1983304
https://doi.org/10.1109/ICCV.2011.6126544

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Gaze position Detection and Calculation
	3.2 Candidate Screen Detection
	3.3 ORB Feature Detection
	3.4 Reference Contour Comparison
	3.5 Gaze Point Transformation
	3.6 Front End Display

	4 Evaluation
	5 Conclusion
	References

