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Abstract

The thesis demonstrates an idea for helping users in visual analytic tasks by in-

vestigating some critical steps required for providing recommendations. The

proposed model uses mixed-initiative interaction approach by detecting users’

negative emotions, caused by the visual analytic tasks, as a cue to generate

useful guidance. For building a negative emotion detection classifier, I have

created a dataset from 28 participants carrying out intentionally difficult vi-

sualization tasks and collected their emotional responses using multiple bio-

sensors. I used this dataset to built a real-time emotion detection model which

predicts mental state in every 4s. Next, the visualization tool uses the detected

emotions to generate a recommendation and decide when to intervene. Ad-

ditionally, the system also adapts intrusion level by analyzing long-term emo-

tions, and decide the best way to show the help. Finally, I have concluded

this work by discussing the design space of interventions for providing just-

in-time assistance in visual analytics.
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Chapter 1

Introduction

Data visualization has been around for decades and is gaining a lot of atten-

tion in every area, such as medical, business and text analysis, throughout the

world [12]. Visualizing a big dataset helps users to understand patterns, allows

them to interact with data and calculate the key findings visually. In addition,

analyzing data from the past can help in making decisions based on the trends

or in predicting the future outcomes. Figures 1.1 and 1.2 show an interactive

text visualization interface for analyzing patterns in a document and a health

activity visualization respectively.

The complexity of data visualization is dependent on the tasks and can

vary from a simple bar graph to a more complicated design for solving real-

world problems like predicting a natural disaster based on the historical data.

Again, as can be seen in Figure 1.1, a clear representation of a large text docu-

ment helps users understanding something which was not visible in the orig-

inal text file and allows them to see the trends in the text. Information visu-

alization is used by both non-expert users (people who don’t work in a data

science field) and expert users. For example, non-experts deciding between

which car to buy based on multiple attributes such as budget, model, type etc.

(Figure 1.3); and experts analyzing big data for companies, predicting stock

1



Chapter 1: Introduction

Figure 1.1: DocuBurst interface for analyzing contents of long documents [6].

2



Chapter 1: Introduction

Figure 1.2: Fitbit activity visualization (fitbit.com).

pricing, understanding text or in academics.

Although information visualization is very helpful, it is also a challenging

task [20, 44]. Some of the significant challenges are: (1) dealing with a com-

plex dataset involving multiple variables; (2) using a new or unfamiliar dataset

where the nature of the data is unknown; (3) using a new tool or merely a new

visualization. Any of these cases requires an extra effort from the user which

could result in a high cognitive load. Moreover, working in the real world sce-

nario where deadline pressure, work stress and personal life crises are already

affecting the performance of a user [10], it becomes difficult to stay focused

while solving these data analysis tasks.

3



Chapter 1: Introduction

Figure 1.3: Comparing a car based on multiple attributes [37].

All users, expert and non-expert, go through a range of negative emotions

such as confusion, frustration and anger; when they get stuck in a task, and

this increases the chance of making more errors or disengagement [4]. For ex-

ample, if a user is new to a particular visualization tool and got stuck while do-

ing a task due to the complex user-interface (UI), then the user will go through

a range of negative emotions because this complexity is blocking the workflow

and distracting the user’s attention. Therefore, after a certain amount of time

the user will feel demotivated and ultimately disengage [4]. In other words,

these negative emotions might be an indication of a hindrance in the work-

flow which could lead to mind wandering or disengagement [2]. Moreover,

there are many existing visualization tools available which help in facilitating

the data analysis process such as Tableau, Microsoft Power BI and Google An-

alytics (Figure 1.4), but these interfaces also display many functions which can

be overwhelming and confusing for the users.

There is a need to build a support system which would provide users with

meaningful recommendation or guidance and help them to overcome issues

4
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Figure 1.4: Existing data visualization tools have many interactive capabilities
which may be confusing to users. Top: Tableau; Middle: Microsoft Power BI;
Bottom: Google Analytics. 5



Chapter 1: Introduction

in understanding the data and hence, prevent disengagement. Providing mean-

ingful recommendations in a visual data analytic tools have been a challeng-

ing task because: (1) The recommendation system doesn’t know when is the

right time to provide help and continuously showing help on the screen would

cause distraction and could be annoying; (2) If a user is stuck and feeling con-

fused, the system doesn’t know the cause of this emotion and how to fix it as

same emotion can occur for different cases (interface-related, data-related or

external factors); (3) System cannot predict intensity of an emotion and there-

fore, failed to vary the intrusiveness accurately. Moreover, the overall interac-

tion is still one-sided, and the system doesn’t understand the mental state of

users or how to react differently to different states. This work argues that to

build a smart recommendation system; there is a need for leveraging mixed-

initiative interaction approach so that the system could understand the cues

from the user and react accordingly (bi-directional interaction).

A recommendation tool called Clippy was introduced in Microsoft Office,

but in a short period, it was discontinued due to poor feedback from the users.

After the discontinuation, many studies and articles [15, 23, 45] found that

the problem with Clippy was its intrusiveness and providing help which nei-

ther meaningful nor related to the task. The example demonstrates the need

to improve two-way interaction, also known as mixed-initiative interaction,

for building a better recommendation system which could understand what

a user needs and guide them accordingly while also taking intrusion level into

account.

1.1 Motivation

Recommendation systems have been extensively studied and are successfully

implemented in many different areas; for example, in games [31], e-commerce [36],

and tutoring systems [48]. Some common examples of recommendations sys-

6



Chapter 1: Introduction

tems which we use in our daily life are video suggestion on YouTube, movie

recommendation on Netflix, friend suggestion on Facebook, and Amazon “what

you might like” product suggestions; these systems are getting smarter every

day with the boom in machine learning technology [41]. Usually, these sys-

tems construct a user profile for each individual and use implicit or explicit

feedback from the users to learn about their preferences. Here, implicit feed-

back is information that gets collected in the background for deducing user’s

behaviour such as monitoring user’s mouse movements, history or time spent

on a specific page; whereas, explicit feedback collects the data by prompting

users to provide particular information like rating a product or filling a survey.

As users can’t infer implicit feedback because they might not necessarily be

aware of it, this type of feedback has proven successful in tutoring systems and

websites for forming a useful recommendation in comparison to the explicit

feedback which can be subjective and biased [18].

1.1.1 Adaptive Systems

There are many existing tutoring software and video games which adapt to

user’s learning curve [4, 13, 42]. Moreover, they use different prediction mod-

els, ranging from simple classification models like k-nearest neighbours to

more complex classifiers like neural networks. These models run in the back-

end and use implicit or explicit feedback from the user for deciding an appro-

priate action in real-time. Although these techniques have been applied to

visual analytic tasks [25, 42] but never have tried to use emotions as a feed-

back for the recommendation systems, to best of my knowledge.

7
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Chapter 1: Introduction

1.1.2 Affective Computing

Emotion detection and user behaviour analysis got its roots from psychology,

but R. Picard first introduced the affective computing term in computer sci-

ence in 1995 [33], and since then researchers are applying this technique in

different areas of computer science [3]. Affective computing is the study of de-

tecting or interpreting human emotions by reading patterns or signals emitted

by the body, for example, blinking rate and gestures. These signals or patterns

are often recorded with the help of bio-metric sensors such as an eye tracker or

electroencephalography (EEG) [26, 51]. The affective computing field comes

under the family of cognitive science which is the study of mind and its pro-

cesses.

The fundamental idea to recognize an emotion is by calculating the values

of valence and arousal using bio-senors. Arousal is the intensity of emotion

and valence helps to distinguish between positive and negative emotion. Dif-

ferent values of arousal and valence are the measure of different emotions, for

example, positive values of valence and arousal represent positive emotions

such as joy and excitement. Figure 1.5 visualizes a 2 dimensional and 3 di-

mensional emotion graph which explains how a basic emotion (in 2D graph)

or more complicated emotions (in 3D graph) varies with valence and arousal

values [21].

Furthermore, bio-sensors record two types of signals — physical and phys-

iological, and allow researchers to observe the patterns and distinguish differ-

ent mental states. The human body reacts differently with every emotion such

as in case of anger, heart rate increases with an increase in blood pressure and

breathing rate. These signals help in calculating valance and arousal levels.

Physical Signal can be captured from body movements for example — body

gestures, muscle movements, and gaze movement. Recent studies have shown

that these signals can be beneficial to detect user state. People tend to show

some common patterns for particular mental states. For example, a study by

9
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McCuaig et al. [28] revealed that people tend to tilt their head to the left while

frustrated. Moreover, the predicted emotions from the physical signals are

easy to verify by video recording the experiment and doing a retrospective

think-aloud study or just a simple note-taking and observing the user. Tak-

ing the same example by McCuaig et al. [28], tilting head was an indication of

frustration which was later verified by looking at the video. The only draw-

back with these signals are, physical signals are conscious and can be easily

manipulated or suppressed by users.

Physiological Signal are the signals discharged by a human body involuntar-

ily and any changes in these signals mean some reaction or change in mental

state. Many researchers have used physiological signals in their studies for

detecting emotions as these signals are continuous and unconscious; that is,

they can’t be manipulated by the participants. Electrical signals firing by neu-

rons, skin conductance and heart rate are some of the examples of physiolog-

ical signals; but filtering the noise from these signals is one of the main chal-

lenges. Another challenge is ambiguity; it difficult to prove that the changes

recorded are from the test session or another reason such as fluctuation in

the room temperature. Therefore, it is essential to keep the environment con-

trolled through-out the session to record accurate data. Moreover, to over-

come these limitations, the physiological signals are used in combination with

other methods for justifying the predicted emotion. For example, if the signals

predicted that a user is feeling angry while performing a task then tracking

gaze activity could confirm that this anger was caused by the given task and

not by any change in the experiment environment. Some of the most com-

monly used signal are Electroencephalography (EEG), Galvanic skin response

(GSR) and Electrocardiography (ECG).

Using different bio-sensors to track these body signals has shown potential

in accurately detecting mental states (details examples are in the next chap-

ter). Additionally, previous research has also tested prediction models for on-

the-fly for emotion detection [26]. Though, placement of these devices on a

10
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user’s body has been shown to be distracting in the tasks [46]. As the tech-

nology is advancing, the size of these sensors shrinking rapidly, for example,

ECG sensors used in Fitbit device. I believe that blending these techniques in

information visualization could help in developing a better recommendation

system for visual analytic tools.

1.2 Contribution

After observing the gaps in recommendation system design and work in affec-

tive computing, I propose a recommendation model in visual analytics that

would detect the negative emotions of the user, analyze it and provide mean-

ingful guidance in real-time to prevent disengagement. Figure 1.6 gives an

insight of the work-flow of the proposed system, and the contribution of this

thesis leads to:

• Choosing the least intrusive bio-sensors which will minimize the users’

distraction caused by the complicated setup or calibration process. Also,

these devices should still be able to provide enough information for neg-

ative emotion detection.

• Next, developing a real-time negative emotion detection algorithm us-

ing the selected sensors. This thesis focuses on detecting frustration and

any further mentions of the term negative emotion(s) is referred to de-

tecting frustration state.

• Helping users in visual analytic tasks by providing meaningful recom-

mendations in real time using human emotions as implicit feedback.

For investigating the last contribution point, I followed up the idea men-

tioned by Conati et al. [7] and Olmo et al. [8] in adaptive visualization interface

context and applied it on building a smart recommendation system. The idea

12
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served as a foundation for this thesis which explored all the dimensions men-

tioned below.

1.2.1 When to Show Help

Real-time detection for predicting user’s mental state, here negative emotions,

and feeding back into the analytic system to find out when a user needs help

or when is the time to show help so it won’t annoy the user.

1.2.2 What Type of Help Should be Shown

For an effective and useful recommendation, detecting the source of negative

emotion is very important. For example, a user can be frustrated by either

the interface functions or dataset complexity. Knowing this would help the

system to decide what kind of help should be provided — interface related or

dataset related. I leveraged gaze location information to differentiate between

these cases. Details are discussed in the later chapters.

1.2.3 How to Show the Help

After knowing when and what help a user needs, it is also important how to

show it so that it would aid the users in solving the task or understanding the

dataset and helping them to overcome the negative emotion. For example, if

the system detects that a user is confused because of the interface function-

ality, the next step is “how to help the user?”. Would it be helpful to highlight

some interface buttons, or pop up a message box, or open up the interface

manual? There are ample possibilities to show the help but finding out which

way would be the best for users, so that they won’t get annoyed by it, is a chal-

lenge. Therefore, I explored this topic and discussed some necessary steps to

13
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consider like the degree of intrusion and design space of recommendations,

before providing a recommendation.

1.3 Organization

Chapter 2 discusses related work on the emotion detection techniques, adap-

tive systems and challenges in recommendation systems. Chapter 3 describes

the user study design and data collection process. The details about the data

processing and classification model testing are discussed in Chapter 4 fol-

lowed by designing the real-time negative emotion detection in Chapter 5.

Chapter 6 explains fundamentals of creating a recommendation system. Fi-

nally, Chapter 7 addresses limitations of this work, discusses the results and

concludes the thesis with ideas for future work.

14



Chapter 2

Related Work

This chapter gives an insight of previous related work done in affecting com-

puting and recommendations in visualization which inspired this thesis.

2.1 Affective Computing

Past research in affective computing has investigated detecting user’s mental

state such as mind wandering, stress and frustration. Bixler et al. [2] demon-

strated a novel technique for detecting mind-wandering (MW) using eye gaze

information. MW is one of the outcomes of negative emotion, and this is what

I wanted to detect and prevent before users become disengaged. Similar to the

motivation of my work, the authors attempted to sustain the engagement pe-

riod by reducing the factors that could potentially cause MW. Moreover, the

paper talks about the idea of creating intelligent systems that could use this

information to intervene and restore user’s attention to the respective task.

For building the MW classifier, gaze data were collected from 178 participants

in an on-screen reading tasks (see Figure 2.1). Three sets of gaze features were

used for supervised classification — 30 global features, 19 local features, and
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Figure 2.1: Gaze pattern from reading, showing pauses and re-reading [2].

Figure 2.2: Interface used for teaching by D’Mello et al. [9]. The numbers rep-
resent different gaze zones in the interface.
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12 contextual features yielded at 72% accuracy in detecting MW.

Similarly, gaze information was used in intelligent tutoring systems (ITS)

to detect students’ boredom and disengagement dynamically. Later, the au-

thors used gaze-sensitive dialogue based interventions to re-orient the user’s

attention towards the tasks [9]. They did a controlled experiment with 48 stu-

dents on four biology topics — two on gaze reactive and two on non-gaze ver-

sions of the tutor. Figure 2.2 shows the tutoring system that was used in the

user study. In the Figure, zone 0 shows the animated tutoring agent, zone 1

shows the pictures related to the topic, zone 3 and 4 were the blank area, zone

2 was a text box, and zone 5 was an off-screen area. The interface can have

15 different responses based on the gaze patterns on different zones. To trig-

ger the gaze-reactive interventions, the authors used a rule-based approach

where one of the conditions was that if the user hasn’t looked at the zone 0

and 1 for more than 5s. One of the dialogues the agent could say was “Please

pay attention.” After each lecture, the participants were required to self-report

their attention level on a post-lecture engagement questionnaire. The results

indicated that gaze-sensitive dialogues were successful in re-orienting the at-

tention.

These two papers gave me some insight into how an eye tracker can be

helpful in determining user’s attention on the screen. Moreover, I also con-

cluded that recording gaze data is least intrusive as the eye tracker doesn’t

need to be attached to the user’s body and doesn’t require any complicated

calibration.

Work by Conati looks over human factors in visualization and recommen-

dation systems and has also inspired this thesis. Her work with Steichen [38,

39] have proposed a method which looks over adapting aspects of visualiza-

tion with every individual by measuring user’s cognitive abilities and predict-

ing performance from eye gaze data. The research questions this article tried

to answer were: (1) To what extent can a user’s current task, performance,
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Figure 2.3: Bar graph and radar graph interface used by Steichen et al. [39] for
studying gaze path on different areas of the interfaces.
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long-term cognitive abilities, and visualization expertise be inferred from eye

gaze data? (2) Which gaze features are the most informative?

Moreover, the authors talked about how the visualization interface can

change its functions and provide user-specific support. Additionally, they in-

vestigated gaze area of interest for finding which part of the interface should

be changed to support the user’s cognitive abilities. For example, if a user

with low cognitive abilities is making a high number of gaze transitions on

a particular part of the interface, then the system should be able to provide

support related to that area. For this, they conducted an experimental study

with 35 participants (18 females) where the participants were required to per-

form tasks (with varying difficulty and types) on two basic visualizations —

bar graphs and radar graphs (Figure 2.3). The tasks were to evaluate the per-

formance of one or two students in eight different academic courses on an

artificially generated dataset. Later, 74 features were extracted from the gaze

data which included fixation and saccade features such as the number of fix-

ations and saccade length, and area of interest related features like time spent

on each interface area and most extended fixation in each area. To test dif-

ferent models on the list of features, the WEKA machine learning toolkit was

used, and the accuracy was discussed separately for each task type and com-

plexity (total 5 types and 9 complexity). Finally, the authors found that linear

regression model consistently achieved the highest accuracy but overall accu-

racy for each category and complexity was in the range of 55% to 60%. Also,

the results indicated that the contribution of features changes with every task

goal but the area of interest related features were most crucial.

Another work by Jaques et al. [19] demonstrates a novel technique of pre-

dicting user’s affect (boredom and curiosity) in an ITS system using gaze data.

Here, the authors ran a user study with 67 participants and collected the gaze

data while the participants performed given tasks on an ITS system called

MetaTutor. After completing the tasks, the participants self-reported their

emotions using the Emotions-Value questionnaire (EVQ) which was based on
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Figure 2.4: Depicted gaze trends for engaged and disengaged students [19].

the Pekrun’s Academic Emotions Questionnaire [32]. Next, 166 features were

extracted from fixations and saccades, and area of interest. The authors achieved

69% and 73% accuracy for detecting boredom (linear regression model) and

disengagement (random forest model) respectively. Figure 2.4 visualizes fixa-

tions and saccades in engaged and disengaged students.

A study by Sun et al. [40] detects mental stress using a combination of

ECG, GSR and accelerometer. The ECG signals were used to calculate heart

rate variance (HRV) at the sampling rate of 100 Hz (same for the accelerom-

eter) and the data from GSR was sampled at 32 Hz. Here, 20 participants (13

males) were presented with mental arithmetic problems to induce stress, and

these problems would adapt the difficulty level to maintain an appropriate

stress level. Moreover, the participants meditated for 10 min before solving

the tasks for setting up the baseline, allowed participants to relax, and then

confronted with the tasks under time pressure in three different conditions —

sitting, walking and standing. A total of 10 features were extracted from HRV,
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Figure 2.5: Types of recommendation techniques [18].

5 from GSR and 4 for each axis from the accelerometer. After that, the WEKA

toolkit was used for testing different machine learning models and overall, de-

cision tree achieved highest accuracy. Lastly, the authors found that the GSR

features were independent of tasks.

Furthermore, research work by Afergan et al. [1] leverages functional near-

infrared spectroscopy device (fNIRS) for dynamic adaption of assigning or re-

moving the number of unmanned aerial vehicles (UAVs) to a user according

to his/her cognitive status. In this, functional near-infrared spectroscopy de-

vice (fNIRS) has been to use for detecting user mental states such as a pe-

riod of boredom, anxiety or overload. fNIRS uses near-infrared light to detect

levels of oxygenated and deoxygenated hemoglobin in a brain. Signals from
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fNIRS have been filtered to reduce noise and later fed into Support Vector Ma-

chine (SVM) machine learning algorithm for classifications. Lastly, a study by

Sharma et al. [34] compared the performance of different signals and algo-

rithms for identifying stress. They compared 13 possible physiological and

physical signals and concluded that heart rate variance (HRV) outperforms

every other signal for stress detection, followed by EEG then GSR.

These paper helped me to understand simultaneous working of the phys-

iological signals, with different sampling frequency rate, and the experiment

design. There are many research studies for detecting mental state using var-

ious combinations of bio-sensors [24, 26, 49] and these studies helped me to

decide what bio-sensors I should use in my work.

2.2 Recommendations in Visualization Systems

An article by Isinkaye et al. [18] provides detail about principles, methods and

evaluation techniques for recommendation systems. In this work, the authors

talk about how the implicit and explicit feedback can be used to learn users’

preferences and list the pros and cons of each feedback type. Also, the article

digs deep into different recommendation techniques (Figure 2.5) — content-

based filtering, collaborative filtering and hybrid filtering. Here, the content-

based is a domain-dependent algorithm, and it emphasizes more on the anal-

ysis of the attributes of items in order to generate predictions, for example,

web-page recommendations from keywords. Next, collaborative filtering is a

domain-independent prediction technique for content that cannot easily and

adequately be described by meta-data such as movies and music. Lastly, as

the name suggested, the hybrid technique uses properties of both the meth-

ods for improving the quality of a recommendation. The article provided me

with a clear understanding of the types of feedback and techniques that can be

used to build a recommendation system. Finally, I learned and applied differ-

22



Chapter 2: Related Work

ent evaluation methods, for measuring the accuracy of the guiding systems,

from the article.

Furthermore, Voigt et al. [43] have discussed some of the challenges of

data scale and proposed a context-aware recommendation algorithm which

leverages online annotations to provide help. Similarly, Gotz et al. [14] have

proposed a system that generates recommendations in visualization, driven

by the user behaviour (implicit signals) and successfully reduced overall task

completion times and errors. Next, Hernandez-del-Olmo et al. [16] discussed

the trade-off between recommendations and intrusion cost. According to the

authors, the current evaluation techniques for recommender systems do not

consider the intrusion cost, but each recommendation contributes to some

amount of distraction.

2.3 Summary

From the past work in affective computing and adaptive systems, I gained a

deep knowledge about different types of body signals that can be used to cap-

ture mental states. Also, how these signals can be processed and which type of

features should be extracted for achieving high accuracy. Prior work in emo-

tion detection helped me to understand bio-sensors devices (pros and cons)

better and helped me to select appropriate sensors for my work.

Furthermore, I gained the knowledge about types of recommendation sys-

tems and their processes. Also, how I can leverage these finding for building

the foundation of my proposed system.
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Data Collection Study

This chapter explains the data collection process and the experiment design.

Since the combination of the bio-sensors was unique and there is a lack of

availability of emotion datasets for visual analytic tasks, I designed a user study

to collect the emotional responses from the participants while they perform

the given tasks. This data was later used to train the negative emotion classi-

fier.

3.1 Designing the Study

The first goal of this thesis was to detect negative emotions while a user per-

forms a visual analytic task. Keeping this in mind, I had to design my study in

such a way that it would induce a range of negative emotions like confusion,

anger, frustration and also keep the user engaged with the tasks. For this, I fol-

lowed these steps in the research process: (1) Finalized the visualization tool

to use for the experiment; (2) Adopted a performance incentive approach in

the experiment to engage the participants; (3) Designed the tasks; (4) Setup

the hardware; (5) Pilot tested the study design; and (6) Ran the user study.
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Figure 3.3: Snippet of a log file generated by the visualization tool. Here, the
user activity column records mouse click (orange), answers submitted (green),
and any interface functions used by the user (blue).
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3.1.1 Visualization Tool

Visualization tools allow users to interact with the data visually and the vi-

sual presentation lets users understand behaviour, trends and patterns in a

big dataset. Here, PivotSilce [50] was used as a visualization tool for the user

study. The interface visualizes published research documents in a scatter plot-

based design and allow users to customize the visualization by adding multi-

ple filters and making queries. For example, the total number of authors who

published a journal paper in the year between 2011 and 2014 in the InfoVis

conference. Also, the interface is open source, and the source code can be

modified according to the experiment design.

I modified the interface according to the experiment requirements, that is,

updated the database [17], removed all the extra buttons which were not use-

ful in the experiment, included a task panel to display the tasks and added a

timer which shows total time spend. The unneeded functions were removed

as I wanted to minimize the possibility of getting negative emotions induced

due to complex interface options and maximize the chances of inducing neg-

ative emotions due to the visual analytic tasks. Figure 3.1 shows the modified

interface version with different labelled sections. Section a is a search panel

where a user can apply a filter by adding a query in the search bar. The query

can be a name of an author, conference, year range or a keyword. Section b is

where the tasks were displayed with a timer attached (see Figure 3.2). The role

of the timer was to give a sense of deadline pressure and simulate real-world

scenario so that the participant will express real emotions. All the attributes

of a research document such as title, author name, keyword, conference, year,

reference and citations were displayed in section c which is called the info

panel. These details are dynamic and change with every dot on the scatter

plot, therefore, clicking on different dots will show the details of that partic-

ular research document. Section d is the scatter plot-based presentation of

all the research papers. Section e is the x and y filter axis and section f is the

28



Chapter 3: Data Collection Study

filtered area.

Next, only one task was shown at a time and participants were required to

enter the correct answer in order to go to the next task. In case of a wrong an-

swer, the system pops up a message box saying “Incorrect answers. Please try

again” (see Figure 3.2). This strategy was used for preventing the participants

to skip to the new task or end the experiment quickly without trying to solve

it. Furthermore, the interface creates a log file for each session which records

mouse activity (click and drag locations), interface functions that have been

used and the values entered in the answer text box. Figure 3.3 shows a snippet

of a log file from a session.

3.1.2 Performance Incentive Approach

For keeping the participants engaged with the tasks and induce real emotional

responses closer to what a person expresses in a real-world scenario, I used the

a performance incentive approach. In this, all the participants had an oppor-

tunity to earn more compensation by completing all the tasks under 20 min

(threshold time). On the other hand, participants were also instructed that

they could lose this bonus if they make mistakes in entering the correct an-

swer or completing the tasks later than the threshold period. The threshold

time, 20 min, was calculated in the pilot study and I developed an algorithm

to compute the final compensation using the user’s completion time and the

number of attempts from the log file. Note that all the participants received

$10 as a base amount for their participation and the approach was only ap-

plied to the bonus amount. The compensation algorithm is based on the fol-

lowing formula:
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Step 1: Minimum base amount that every user received

baseAmount = $10

Step 2: Total time is converted into minutes from

milliseconds

totalTime = totalTime/(60*1000)

Step 3: Total time is round to the closest highest

integer using ceil

totalTime = ceil(totalTime)

Step 4: Updating the base amount if the total time is

less than 20 minutes

if (20 - totalTime) >0

baseAmount = baseAmount + 2 * (20 - totalTime)

Step 5: Subtracting number of incorrect answers from

the base amount

baseAmount = baseAmount - totalIncorrectAnswers

Step 6: If the base amount gets less than 10 then

overwrite the amount

if (baseAmount) <10

baseAmount = $10
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For example: if a participant completes in the tasks in 17 min with 1 incorrect

answer then:

baseAmount = $10 + 2 * (20 - 17) (Time bonus)

baseAmount = baseAmount - 1 (Incorrect answer penalty)

Final amount = $15

This encouraged the participants to be involved in the tasks and perform them

with sincerely.

3.1.3 Task Design

I designed the data analytic tasks in increasing order of difficulty as the idea

was to make participants comfortable with the interface and encourage them

to solve the tasks and then gradually increase the difficulty level. The sequenc-

ing also made sure that the participants get some experience by solving some

easy tasks before moving forward for the more difficult ones.

There were total six tasks for every participant — two practice followed

by four main tasks. The task panel on the interface was responsible for indi-

cating the current level — start the session, practice and main task (with the

timer). Before displaying the main tasks, the interface confirms with the user

by popping up a confirmation dialog box. The changes in the task panel dis-

play design for each level is shown in Figure 3.4. All the participants solved an

identical set of tasks to keep the difficulty level symmetric. The practice tasks

were designed to make the participants familiar with the interface function-

alities and prepare them for the main tasks. Participants were encouraged to

explore all the interface options during the practice tasks as their performance

was not recorded at this time, only the sensors were recording their emotional

responses which were independent of their performance in the task. Next, in

the main tasks, the first two tasks were easy and straightforward which only
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required to apply 1-2 filters and getting the output. This was again to boost up

the participants’ confidence level. The first two tasks are:

Task 1 - How many papers did “Kwan-Liu Ma” publish in “2012”?

Task 2 - How many papers were published in “2014-2015” with a keyword “in-

formation visualization” (case sensitive)?

The third task was considered as the medium level which required some

logical reasoning and had 2 interdependent solutions:

Task 3 - How many papers were published in the “Vis” conference with a key-

word “volume rendering” (case sensitive)? Also, name the author from this col-

lection who has 5 publications?

The final task was intentionally made difficult to induce negative emotions

such as confusion, anger and frustration. The final also had 2 interdependent

solutions:

Task 4 - Find the paper with the highest reference count. From that paper name

the author who has the highest number of publications, and the number of pub-

lications.

I tested in the pilot study, with seven expert participants, that these four

tasks were enough to get a meaningful emotion dataset. Also, the designed

tasks were able to induce a range of negative emotions as expected. More ex-

tended tasks would work too but the participants might feel boredom and

shorter tasks would not work in the machine learning classifier due to the

small amount of data.

3.1.4 Hardware

A Shimmer GSR and Tobii X60 eye tracker were used to record the user’s skin

conductance and gaze information at 5Hz and 60Hz sampling frequency re-

spectively (Figure 3.5).
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Figure 3.5: Left: Shimmer Galvanic Skin Response (GSR) device. Right: Tobii
X60 Eye Tracker.

Galvanic Skin Response (GSR): Skin conductance or Galvanic skin response

is a physiological measurement of the flow of electricity through the skin of

an individual. When an individual is under stress or excited (aroused), the

skin conductance of the body increases due to an increase in moisture on the

surface of the skin, which increases the flow of the electricity [34]. The arousal

can be detected by detecting a change in skin conductance.

Eye Tracker: Eye gaze movement patterns provide information on an indi-

vidual’s attention and enable the researcher to understand the individual’s

mental states and intentions [34]. Multiple attributes can be tracked using

an eye tracker such as pupil dilation, blinking rate and gaze location. Pupil

dilation has been examined for stress detection where an increase in pupil

diameter suggests possible negative state. As pupil size is subjective to back-

ground lighting, it is common for researchers to use mean value and check the

delta. It is not significant which eye gives more accurate output, but left eye

is commonly used for monitoring pupil diameter [30]. Some terminologies

used in this paper regarding eye tracking are fixation and saccade. Fixation

is the maintaining of the visual gaze (focusing) on a single location. The sac-

cade is the gaze movement between two fixations (distance). Again, changes

in these numbers would suggest different mental state, for example — in case
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of high cognitive load, users tend to fix their gaze on a certain point. This case

has been confirmed multiple times in the past and again, recently studied by

Fridman [11].

Furthermore, the combination of these bio-sensors was carefully selected

because they were the least intrusive devices and do not require complicated

setup or calibration process. The eye tracker was placed below the monitor

screen, and the GSR was wearable on the wrist with two electrodes attached

to fingers as shown in Figure 3.5. Moreover, these devices were less intrusive

compared to EEG which needed to be worn on the head and required gel elec-

trodes touching the scalp. Also, the EEG signals are susceptible to eye blink-

ing or any forehead muscle movements. Other physical sensors such as mo-

tion capture or kinect or facial expression recognition were discarded due to

the nature of the tasks which doesn’t require too much body movement or ex-

treme facial expressions. Additionally, the ECG device also requires multiple

electrodes attached to different body parts and needs a longer calibration pro-

cess to set up the baseline. On the other hand, the eye tracker only requires

10s of calibration and doesn’t need to be physically attached to the user. In

case of GSR, no calibration is needed and the set up was very easy.

I selected two devices as the GSR was responsible for detecting if a user

is feeling some emotional changes and the eye tracker would check if those

emotions are negative or not. This selection was made based on the related

work section and initial investigation I did on every device. Finally, it has

been proven that every device has its limitations; therefore, a combination of

biosensors have shown better accuracy than using a single device in emotion

detection [27, 34].

35



Chapter 3: Data Collection Study

Fi
gu

re
3.

6:
C

am
ta

si
a

in
te

rf
ac

e
sh

ow
in

g
sc

re
en

an
d

fa
ce

re
co

rd
in

gs
.

36



Chapter 3: Data Collection Study

3.1.5 Pilot Study

After the hardware selection and the task design, I needed to make a plan for

running the study which included designing the flow of the session and setting

up the hardware in a quiet room where participants wouldn’t get disturbed.

Moreover, since there were multiple hardware involved, I needed to test my

plan and fix the problems (if any) as I couldn’t afford to lose any participant’s

data, time or money. For that, I ran a pilot study with seven expert users. These

users were graduate students, Master’s and Ph.D., working in a visualization

lab. The pilot study allowed me to test the overall experiment process and gave

me a chance to improve the design based on the suggestions from the expert

users.

Experimental Setup: The room selected for the user study was specially built

by the university to conduct such controlled experiments and divided into two

parts — experiment room and observer room. The lighting was controlled to

prevent pupil dilation due to any daylight change. Also, two surveillance cam-

eras were used to observe the user’s activity for note taking (can be seen later

in Figure 3.7). For example to see if participants exhibit similar body gestures

during the tasks. At the time of the task, the participants were alone in the

experiment room, and I was in the observer room looking at the participant’s

movements with the help of the cameras. The participants were alone dur-

ing the tasks to minimize the pressure or any distraction due to my presence.

Also, one more camera was placed over the participant’s monitor to record the

frontal/facial view which was used later in the study. Finally, the frontal view

from the webcam and screen was recorded using Camtasia software as shown

in Figure 3.6.

Lastly, from the pilot study, I get to practice the overall session flow, made

the interface more informative by adding message boxes and finally improved

the data annotation part which will be explained in Section 3.2.
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3.1.6 User Study

I conducted a study with 32 participants to collect the emotional responses

during the designed visual analytic tasks, but due to hardware failure, the data

from 4 participants were discarded. The participants were university students

(26 males and 2 female), in third year or higher, from the local faculty of sci-

ence. The rationale behind selecting the criteria was to choose only those

users who have at least some basic knowledge of data analysis. The data col-

lected was later used to build the recommendation system.

Session Flow: The session was divided into three parts, and each part was 20

min long which made the full session 60 min long, on an average. The partic-

ipants were asked to wash their hands before the session as the GSR device is

very sensitive towards sweat or any dirt on fingers. The first part was an in-

troduction session where the participants were welcomed and were briefed

about the session which included answering some questions like, why this

study is been conducted, what kind of tasks they were going to perform and

what data I am recording. After that, the participants were asked to sign a con-

sent form to confirm their agreement with the experimental procedure. Next,

the GSR device was set up on the participant’s wrist, and the eye tracker was

calibrated to record the gaze information. After the placement of the GSR de-

vice, the participants were instructed to keep the hand aside and not to move

their hand with the GSR device on (see Figure 3.7). This was a crucial step to

record the correct values of skin conductance as the GSR is sensitive towards

movements. Due to this, the participants were restricted to use only one hand

to solve the tasks which included operating the mouse and keyboard. The pi-

lot study confirmed that interacting with the visualization tool and solving the

tasks can be easily done with one hand.

After the hardware placement, some general questions were asked to the

participants such as their educational background and their experience in

data analysis. The motivation behind asking these questions was to make the
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participants comfortable with the experiment environment and distract their

attention from the hardware. Next, the PivotSlice interface was introduced to

the participants, and all the basic functions of the interface were explained

to them. Again, all the complex options were removed from the interface to

avoid loading the participants with too much information. Also, a two-page

printed interface guide was provided, and participants were told to use it any-

time during the tasks in case, they forget any of the functionalities. Finally, one

example was demonstrated to give them a sense of the nature of the tasks.

The second part was to performing the designed visual analytic tasks —

two practice and four main. During this period, the participants were alone

in the room solving the tasks, and I was in the observation room looking at the

participant’s activity through the surveillance cameras and writing my notes.

At this moment, both the hardware were recording the body signals, the in-

terface was recording the activities in the log file, the webcam was recording

the facial front view, and the computer screen was captured. After finishing

all the tasks, the interface automatically closes and records the start time and

the finish time in the log file. This allowed me to trim the data recorded by the

bio-sensors and use only the data which was recorded during the part 2, that

is, when the tasks were performed. Part three was the think-aloud session to

annotate the data manually and is explained in the next section.

3.2 Retrospective Think Aloud and Data Annotation

After the participant finished the tasks, the sensors were removed and deacti-

vated, and all the data and recording gets saved in the system used for user

study — participant’s system. Now, in the next part, the data points were

needed to get annotated manually for setting up the ground truth used in the

machine learning classifier. For that, participants were ideally shown their

screen and face recordings (Figure 3.6) and asked about how they solved the
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tasks and their emotional feelings. But, given the amount of time each partic-

ipant spent on first part (learning about the interface) and second part (going

through a range of negative emotions) in the session, it was also learned from

the pilot study that the participants feel overwhelmed, and showing them full

video again and ask them recall all the emotional events on specific points

was not reliable and tiring. Also, other methods such as making the partici-

pants speak aloud during the experiment or doing a retrospective think aloud

after each task would cause too much interference [7]. Therefore, I needed

to develop some other technique which would require a minimum amount

of cognitive load from the participants and also would be accurate enough to

annotate the dataset correctly.

I investigated multiple techniques and finally came up with a new approach

where participants were shown exactly 7 key points in their video and asked

to explain their emotional responses at that time. Additionally, I didn’t ask the

participants to mention a specific negative emotion at those points; instead,

I just asked them to explain what they were doing at that time and how they

were feeling. This way, I was making sure that the participant won’t feel any

pressure to say a negative emotion and hence, preventing any biased answers.

For showing top 7 points, the first thing was to get a hold of participant’s data

as soon as they finish the tasks and then find out key moments where partici-

pants have shown signs of emotional changes.

The first step was to securely transfer the data from the participant’s sys-

tem to my password protected laptop where I could do all the calculation for

finding the key points. Moreover, this whole process was needed to be done as

soon as possible (within 1-2 min) so that it wouldn’t break the session flow for

the participants. To solve this, I wrote a script which closes all the data chan-

nels securely (from GSR and eye tracker) and transfers the log file, GSR data

and eye tracking data to my laptop remotely using encrypted sockets. In my

laptop, I wrote a Matlab script to read the transferred data and calculate the

key points. Here, the key points are denoted as both positive or negative emo-
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tions which means that the algorithm was only capable to flag an arousal state

(positive or negative). Lastly, the whole transferring and calculating was done

in only two mouse clicks and took an average of 60s to get key points. The

details about this pre-processing and key points calculation are in the next

chapter.

After I had the key points, I needed to decide how many were enough to

annotate and cover the full dataset so that it could be used in the machine

learning classifier. Showing all the key points to the participants would be re-

dundant, and a lesser point would just not cover the full tasks performances.

I solved this optimization problem in the user study and tested a range of dif-

ferent points and finally concluded to set the value to 7, that is, 7 key points

were enough to cover the whole dataset. Moreover, the Matlab script calcu-

lates only those points which are at least 60s apart on the assumption that

emotion would last for at least for 60s so if there are two or more key points in

a 60s range that means it is likely the same emotion. Using the same assump-

tion, I annotated all the key points within a 30s range as the same emotion.

For example, if the algorithm detects a total of 30 key points and the recom-

mended 7 point range contains 20 key points, then I am annotating those 20

key points just by showing 7 points in the video to the participants.

The 7 point strategy was faster, as the participants only had to talk about

7 points in the video which was 20 min or longer, and accurate enough to

adopt for the study as in the pilot testing, the experts confirmed that they were

feeling some emotional change at the 7 points shown. Figure 3.8 shows an

instance where the participant looked confused, the algorithm detected this

point, and the participant also verified that he was confused. I showed the

video 30s before the key points to give some time to participants for recalling

that moment and played the video till 30-45sec after the peak. The only lim-

itation in using this technique was failing to annotate those instances which

were flagged as emotional change but were not in the top 7. This limitation is

discussed in the next chapter.
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Moving on, I created another script in Matlab which uses the interface

log file and calculates the final compensation amount using the formula ex-

plained in the performance incentive approach section. The participants were

thanked and provided with their compensation after they finished the last part

of the session.
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Data Processing and Classification

This chapter gives an insight on how the data, from the bio-sensors and the

visualization tool log files, was processed for feature extraction and tested on

various prediction models, offline. Here offline means, all the processing was

done in the Matlab, and the classification part was implemented in Python.

Offline testing was essential as, after the user study, I needed to perform mul-

tiple operations on the data in order to achieve higher accuracy. Then, decide

how to make an online model which would predict emotions in real-time (ex-

plained in the next chapter).

4.1 Pre-processing for the Retrospective Think Aloud

As mentioned in the previous chapter, I developed an algorithm to detect key

points in the participant’s data. This strategy was used to make the think-

aloud session faster by minimizing the time and effort of the participants.

I used GSR data to calculate arousal which is the change in skin conduc-

tance relative to the baseline. As the tasks were meant to induce negative

emotion, I hypothesized that the top 7 arousal points, in the retrospective
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think-aloud, must have caused by negative emotions. I successfully tested

this hypothesis in the pilot study by asking the participants about their emo-

tional state at these 7 points and found that more than 97% of the time these 7

arousal points were due to negative emotions. Now, for calculating the arousal

points, firstly I applied a low band-pass filter with 5Hz cutoff frequency to re-

move all the high-frequency noise, in the GSR signals, that occurred due to

any involuntary hand movement [35]. The step was necessary in order to ac-

curately detect the arousal. Moreover, the GSR device gives skin resistance

in kOhms; therefore, I calculated the skin conductance, in kS (kilo Siemens),

using the formula below:

Skin Conductance[n]=
106

Skin Resistance[n]
(4.1)

Where n is the index in the skin resistance data. Then, the skin conductance

was normalized for rescaling the data between 0 and 1:

SCnormalized[n ] =
SC −SCmin

SCmax−SCmin
(4.2)

Here, SCnormalized[n ] is the normalized skin conductance value at the index n ,

SC is the skin conductance, SCmin and SCmax are the minimum and maximum

values in the data. Figure 4.1 shows the normalized skin conductance signals.

Now, as the skin conductance signals are linear, I needed to find any changes

in the baseline to detect arousal, and for that, I applied the 7-point second-

order Lagrangian interpolation on the data [49]:

g ′′[n ] =100× 2g [n+3]+g [n+2]−2g [n+1]−2g [n ]−2g [n−1]+g [n−2]+2g [n−3]
h 2 (4.3)

Here, g ′′[n ] represents the second order interpolation value at index n in the

data and h is the sampling frequency of the device. This gave me multiple

peaks in the data, but I only selected the top 7 where the key points were at

48



Chapter 4: Data Processing and Classification

Figure 4.3: Moving window concept. The continuous stream of data was di-
vided into a 10s window and all the operations were performed within it. After
that, the window was moved to the next data block with 60% overlap.

least 60s apart. Figure 4.2 shows the snippet of the final graph — inverted tri-

angles are all the peaks detected, and circles are the peaks which were selected

by the algorithm (key points). Finally, these key points were aligned to the time

when the participant started the experiment with the help of log file and dis-

played the exact time instances on the video where the peaks were detected.

Now, as all the nearby peaks, which were 30s apart, were getting annotated,

any latency at those points due to the hardware or the processing was getting

resolved.

4.2 Data Processing after the User Study

This section explains all the data processing performed on the data collected

from the user study. Similar to the previous section, the high-frequency noise

from the GSR and pupil data were removed using a low-pass filter followed by

calculation of skin conductance. Next, I used the moving window concept to

divide the data into smaller blocks as the final prediction model was designed

to work on a continuous stream of data, coming from the bio-sensor, in real-

time. Testing the full data (offline) at once wouldn’t apply in the real deploy-
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Figure 4.4: Comparison of the GSR signals behaviour. Left: Raw data; Right:
Standardized data. Y axis is the amplitude of the signals in kS , and x axis rep-
resents number of samples.

ment scenario and would give wrong results; therefore I used a 10s moving

window size with 60% overlap. I tested the model with different window sizes

and overlaps and got the best accuracy with the settings mentioned above. A

moving window of 10s contains 60 GSR samples and 600 gaze samples and

to briefly conclude the concept of a moving window, I performed all the op-

erations on only the data within 10s then I moved the window to the next 10s

(with an overlap of 6s) and then performed the same calculation. This allowed

me to work on a continuous data. Figure 4.3 explains the working of moving

windows with time.
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Furthermore, raw pupil size data and GSR data were not generalizable as

every person exhibits a different range of emotions with different baselines

and therefore, cannot be used for training a machine learning classifier. For

that, I used standardization method by calculating the z-score to scale the

baseline without disturbing the nature of the data (Figure 4.4).

zscore=
x −µ
σ

(4.4)

Here, x is the raw value in the data set, µ is mean, and σ is the standard de-

viation of the data. This technique is an alternative of normalization and best

work for a moving window because, in normalization, the minimum and max-

imum values vary for every window. In case of z score, I calculated mean and

standard deviation from the first window till the n t h window for keeping the

values consistent and comparable between each window. Figure 4.5 shows

raw pupil data with noise and Figure 4.6 shows processed and filtered pupil

data.

The next part was to filter the gaze data — gaze locations on the screen and

blinking. In case of blinking or too much head movement, any eye tracker fails

to record accurate data and these samples were needed to filter out in order

to generate the final dataset. For that, the Tobii eye tracker SDK calculates a

confidence score for each sample from -1 to 4 where -1 mean no eye detected

and 4 is highest tracking confidence. Also, the documentation provided by

the Tobii suggested to only consider samples with a confidence score of either

3 or 4. I followed the documentation and removed all the samples with 2 or

lower score. Before deleting the samples with lower confidence, I counted the

number of -1s and saved the count to use it later. These -1s could point out

some interesting patterns in the participant’s behaviour. Details are discussed

in the later section. Finally, after saving the -1s count, I removed the samples

with low confidence, and I applied linear interpolation technique to fill those

deleted values.
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Furthermore, I used gaze location information to calculate the focus points,

called fixations, and the distance between two successive fixations, called sac-

cades. Any sudden variations in fixations and saccades might indicate an event.

For example, a large number of saccades and fewer fixations may indicate

visual searching related to confusion and frustration or more fixation in the

same area and fewer saccades could be an indication of high cognitive load. I

used the method illustrated by Olsson [29] to calculate fixations and saccades

between two consecutive inner sliding windows.

As gaze movements are swift and the eye tracker is recording the samples

at 60Hz, calculation of fixations and saccades had to be done on smaller win-

dows (than the main 10s window) to detect gaze activities more accurately.

For example, if a gaze is travelled 50 times between point A and B in 20s but

40 times was under first 5s then, analyzing this behaviour in a bigger window

would be overseen. Therefore, a smaller window size is needed to catch these

behaviours. For that, I created a 5s nested window with 4s overlap inside the

main 10s window to get a better insight into the gaze patterns. Moreover, Ols-

son suggested that taking too small a window would increase the chances of

counting noise as fixation and taking too big window size would count two

nearby fixation points as 1. These nested sliding windows helped in breaking

down the continuous data in the 10s main window into more smaller blocks.

For calculating the fixations and saccades, the overall idea is to take a mean

of x and y coordinates of the gaze location data of two consecutive inner win-

dows and then calculate the distance between them. Once this step is done

on the full 10s gaze data, apply a threshold to select larger distances which are

saccades. Then, finding the median between two saccades will give fixations.

Following are the steps to calculate saccade:

mb e f o r e (n ) =

�

1

r

r
∑

k=1

sx (n −k ),
1

r

r
∑

k=1

sy (n −k )

�

(4.5)
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ma f t e r (n ) =

�

1

r

r
∑

k=1

sx (n +k ),
1

r

r
∑

k=1

sy (n +k )

�

(4.6)

Where sx represents the gaze location in x axis and sy is gaze location in y

axis in a window where n is the index of the sample of interest, and r is the

inner window size in seconds (smaller window inside the main 10s window).

Olsson illustrated this method by taking 4s as the value of r , but I tested dif-

ferent window sizes — 4s, 5s and 6s, and finalized 5s based on the accuracy I

obtained. For calculating the means between two windows, the distance was

calculated as:

d (n ) =
Æ

(mafter(n )−mbefore(n )) · (mafter(n )−mbefore(n ))T (4.7)

Where d is a distance vector of length N − 1 and N is the number of inner

sliding windows. Out of all the distances, I only selected those which were

more than the standard deviation of the vectors. These selected distances

were marked as the saccades. The fixations were calculated by finding the me-

dian of the samples between two consecutive saccades. Figure 4.7 and 4.8 are

the visual representation of gaze paths from two different users in a 10s data

window. Circles are the fixations detects on the raw gaze path represented by

the blue line.

These are all the steps in the data processing. The processed data then fed

into a function to calculate the features which is explained in the next section.

4.3 Feature Extraction

Uniqueness in feature selection is what makes a classifier perform better, there-

fore choosing the features is one of the most crucial steps in building a ma-

chine learning model. For that, I did a thorough study of the related research

and finalized the features which would contribute the most and are sensitive
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towards any changes in the baseline.

To train a classifier model, I calculated a total of 21 features from the pro-

cessed dataset — 8 from the pupil signals, 8 from the GSR data and 5 from the

gaze location data.

Standard deviation, mean, number of peaks and sum of the height of the

peaks were calculated from GSR and pupil size data. These signals are lin-

ear and exhibit similar behaviour; therefore any change in the baseline would

affect those features. Next, I applied 7-point second-order Lagrangian inter-

polation (also mentioned in the data processing section) on the standardized

pupil and GSR data and calculated the same above mentioned features again:

g ′′[n ] =100× 2g [n+3]+g [n+2]−2g [n+1]−2g [n ]−2g [n−1]+g [n−2]+2g [n−3]
h 2 (4.8)

This formula was validated for finding good peaks in the retrospective think

aloud, and therefore, applying the same approach for feature extraction would

make sense. The 7-point second-order Lagrangian interpolation is used for

finding the points where linear signals changed relative to the baseline [49].

Figure 4.9 shows a part of GSR data which was processed, and the 7-point

second-order Lagrangian interpolation was applied. In this Figure, the signals

were re-scaled using standardization (z-score) and are much smoother as the

high-frequency noise was removed. The peaks show changes in the signals

where higher the amplitude means more significant change.

Finally, five features were extracted from fixations and saccades, calculated

in the data processing section, to detect any change in the gaze pattern —

number of fixation, mean saccade length, mean fixation duration and stan-

dard deviation of the fixation points from the centroid of fixations in the win-

dow (indicating the extent of the area of interest). Again, these features were

selected because they are sensitive towards attention and cognitive load, for
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Signals Technique Features

GSR z-score Mean
Standard Deviation
Number of Peaks
Sum of Height of the Peaks

GSR Lagrangian Mean
Standard Deviation
Number of Peaks
Sum of Height of the Peaks

Pupil z-score Mean
Standard Deviation
Number of Peaks
Sum of Height of the Peaks

Pupil Lagrangian Mean
Standard Deviation
Number of Peaks
Sum of Height of the Peaks

Gaze Location Fixation & Saccade Number of Fixations
Mean Saccade Length
Mean Fixation Duration
Extent of Area of Interest
Blinking

Table 4.1: List of calculated features from GSR and Gaze data.
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example, a user tends to focus on a smaller area in high cognitive load [11] and

therefore, the number of fixation reduces with smaller mean saccade length.

The final feature was the total number of -1s which indicated the blinks (ex-

plained and calculated in the previous section) or when the user was not look-

ing at the screen. A high value of this feature might indicate mind wandering

or boredom.

Table 4.1 list all the features that were used for the classifier with respect to

the signals and techniques applied. The classification models are discussed

in the later section.

4.4 Classification Model

After the feature extraction, I calculated the ratio of the events (negative emo-

tion) and non-events class in the final dataset which came out to be 1:12 as

most of the time participants were not exhibiting strong negative emotions.

This highly imbalanced data or also know as rare event detection problem in

machine learning wouldn’t work on any classification model. There are two

ways to resolve an unbalanced class issue — oversampling and undersam-

pling. Oversampling is to generate artificial data of the minority class, and

undersampling is to remove data from majority class. Here, I used the over-

sampling technique as the dataset was not large enough and the cost was high

to ignore any of the cases from the sample size. To perform an oversampling

technique, the Synthetic Minority Over-sampling Technique (SMOTE) [5]was

applied to balance the classes. This algorithm uses the k-nearest neighbour

based method to generate artificial data points along the line of minority data.

By default, it uses five nearest neighbours and randomly pick a point on the

minority data clusters which allows the algorithm to generate artificial data

which has similar behaviours as of its neighbours. Furthermore, to prevent

bias in the accuracy of the classifier due to oversampling, SMOTE algorithm

61



Chapter 4: Data Processing and Classification

was only applied to the training data, and I kept the original unbalanced data

for testing. This allowed me to eliminate those cases in the testing which were

artificially generated by the SMOTE algorithm and might boost up the results

by over-fitting.

Furthermore, after resolving the unbalanced classes case, I tested the dataset

on various supervised machine learning classifiers. For that, I used the sci-kit

learn library in Python and then tested the dataset on several algorithms: sup-

port vector machines (SVM), k-nearest neighbours (KNN) and random forest.

Also, I used the Tensorflow library to test the dataset on neural networks but

due to the smaller size of the dataset, all the classifier types such as simple neu-

ral network, Deep neural network and Recurrent neural network; had failed to

achieve more than 30% of accuracy. I used 28 fold cross-validation (hold out

one participant at a time) to test the accuracy of different models. Random

forest with 1000 trees and max depth 4 outperformed other models and gave

88% of recall score. Since the test data was imbalanced, rather than using a

simple accuracy (which would be high even for a naive classifier), I report con-

fusion matrix and negative class recall score. The recall score tells accuracy of

a model in differentiating between events from the non-events. For example,

if there are 10 negative events and 120 normal states in the dataset and a clas-

sifier couldn’t detect any negative events, it would still give more than 90%

accuracy based on a large number of non-negative events, but the recall score

for the negative class would be 0. To calculate the recall score, first, I generated

a confusion matrix of the predicted result and then used the following recall

score formula:

Confusion Matrix=

�

True Negative False Positive

False Negative True Positive

�

(4.9)

Recall Score=
True Positive

True Positive + False Negative
(4.10)
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Models Recall Score

K-Nearest Neighbors 55%
Support Vector Machine 67%
Random Forest 88%

Table 4.2: Recall of the negative class with different classification models.

�

171 25
1 44

� �

137 45
0 28

�

�

199 39
2 25

� �

236 16
2 20

�

Table 4.3: Confusion matrices of random forest classification from four differ-
ent participants. 1st column represents non-event and 2nd column is nega-
tive response.

Here, True Negative represents a state which was labelled and detected as

a normal state. Similarly, True Positive is the state which was labelled and de-

tected as a negative emotion. On the other hand, False Positive was labelled

as normal but detected as a negative emotion, and False Negative was labelled

as negative emotion but detected as a normal state. Since one of the primary

goals of this work was to provide help when a user needs guidance, calculat-

ing and comparing the recall score of the negative emotion class made more

sense. Table 4.2 shows accuracy, in terms of negative class recall score, of all

the models tested on the emotion dataset.

Moving on, Table 4.3 shows four confusion matrices from four different

participants which gave an insight into the random forest classifier accuracy.

Using the first example from the table, 171 are the non-event (true negative),

25 are false positive, 1 is false negative and 44 represent negative emotions
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(true positive). The model detected high false positive which means that some

events that were labelled as a normal state are being detected as emotion events.

Two primary reason could cause this — either the model was not appropri-

ately trained, or it was detecting the negative emotions that were missed in

training data as they were not in the top seven key points discussed in the

think-aloud session. Labelling the dataset based on seven key points has its

advantages, but there was always this risk that some of the key points would

be missed in labelling. I hypothesized that the model was working correctly

and the cause of high false positives was due to the missing labels. Moreover,

if the model was not predicting correctly or was over-fitting, then it would not

give a high recall score and low false negative.

In addition, Figure 4.10 represents GSR signals from different users where

stars were marked on the peaks that were labelled as emotional change. In

this Figure, it can be noticed that several peaks exhibit similar behaviour but

were not labelled as an emotional change due to the algorithm rules — select-

ing only seven top points which were at least 60s apart and labelling similar

peaks within 30s of that point. Therefore, this might indicate that the classifier

also flags those emotion states which were not labelled in the dataset. As the

final goal of this work was to provide a variety of types of assistance, provid-

ing unwanted help (false positive) is less problematic, if designed well, than

missing potential moments of frustration and confusion (false negative). In

a nutshell, using recall score again helped me to justify the correctness of the

model and gave the actual accuracy by differentiating between true positive

events (negative emotion) and true negative events.
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Signals Technique Features Labels

Pupil z-score Mean a
Standard Deviation b
Number of Peaks c
Sum of Height of the Peaks d

Pupil Lagrangian Mean e
Standard Deviation f
Number of Peaks g
Sum of Height of the Peaks h

Gaze Location Fixation & Saccade Number of Fixations i
Mean Saccade Length j
Mean Fixation Duration k
Extent of Area of Interest l
Blinking u

GSR z-score Mean m
Standard Deviation n
Number of Peaks o
Sum of Height of the Peaks p

GSR Lagrangian Mean q
Standard Deviation r
Number of Peaks s
Sum of Height of the Peaks t

Table 4.4: Labels used for each feature.
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Chapter 4: Data Processing and Classification

Ranking Features

1 Std GSR (Lagrangian)
2 Mean fixation duration
3 Mean PD (Lagrangian)
4 Std PD (Lagrangian)
5 Std GSR (zscore)
6 No. of peaks PD (zscore)
7 Mean GSR (Lagrangian)

Table 4.6: Ranking of the finalized features.

4.5 Code Optimization

After building a working negative emotion classifier, the final step was to make

the model more efficient by reducing the feature vector dimensionality. This

step was required because the goal of this thesis was to get feedback from users

on-the-fly and decide a suitable recommendation in real time. For optimiz-

ing the model, I calculated and selected only those features, from the current

feature set, which were contributing the most in achieving the highest accu-

racy. For that, I used brute force technique to calculate the ranking of each

feature based on the recall score and tested the model with all the possible

arrangements and combinations of the features. Table 4.4 shows the naming

convention (labels) used for each features in Table 4.5.

As can be seen in Table 4.5, step 1 (Start) is where I tested the accuracy of

single features. The feature with the highest accuracy is highlighted as green,

in the table. In later steps, I merged the selected feature combinations from

the previous step with new features and calculated the accuracy. As can be ob-

served in the table, step 7 (rkefnd) reached the highest accuracy (0.88), and

following combinations gave accuracy approximately consistent accuracy be-

tween 0.83-0.84 then starts to drop in later steps (not in the table). Once I no-

ticed this pattern and the maxima where the accuracy was highest, I selected
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that features combination and dropped all the remaining features. The final

seven features helped the code to run faster as the dimensionality of the fea-

ture set was reduced from 21 to 7. Table 4.6 shows the list of finalized features

and their ranking.

In summary, to this point, I collected the emotional response data from

user study then did data processing, extracted features, tested the classifier,

and optimized the model to work online. Next, this thesis will talk about how

I made the model online and how the system generates the recommendations.
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Real-Time Prediction

This chapter starts the second half of this thesis. As the prediction model was

able to differentiate between negative emotions and non-negative states with

a recall of 88%, the next step was to make the model online so that it would

provide the prediction in real time. That is, receiving the data from two differ-

ent bio-sensors (GSR and eye tracker) at different sampling frequencies, sync

the signals in a moving window, process the signals, extract the features, feed

it into the machine learning model and finally get the predicted output. The

initial model wouldn’t work online as the bio-sensors APIs were in C#, the pre-

processing was happening in Matlab, and the prediction was built in Python.

5.1 Receiving the Data

The first step was to receive the data from the bio-sensors instead of saving

it in a file so that the prediction model could work on a continues stream of

data. The problem with this was that the bio-sensors APIs were in C# and the

prediction model was in Python. Moreover, receiving data from two different

devices required to run two different C# programs in parallel and then send
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those data to the Python function. To solve this, I used socket transfer ap-

proach which allowed me to build a communication path between the Python

and the C# programs and to minimize data loss or any latency while transfer-

ring the data. I used User Datagram Protocol (UDP) method as the data trans-

fer was happening in the same system and there was no need to add additional

security offered by Transmission Control Protocol (TCP). The overall idea was

to send data packets from the bio-sensor APIs (as clients) to the Python func-

tion (as the server). Moreover, I assigned the clients two different ports with

same local IP to prevent any data conflicts and made the server to listen to the

assigned ports. Figure 5.1 illustrates the internal communication of the sys-

tem. Now next issue was to sync the data received and is discussed in the next

section.

5.2 Merging and Parallel Processing

Since the data from two different bio-sensors was coming in parallel with two

different sampling frequencies (GSR at 5Hz and eye tracker at 60Hz), there-

fore, I needed to receive it in parallel so that I could work on a data stream

recorded at the same time. For that, I used the multi-threading approach in

Python and assigned two separate threads that were responsible for extracting

data from the server (listening on two different ports) and feed it into separate

the data processing functions.

After successfully receiving the data in parallel, in real time, the next part

was to merge the data processing function, feature extraction function and the

classification model; and for that, I re-wrote all these parts in Python. Since

the operation I applied in the data processing was independent of any Matlab

core functionalities, it was more comfortable for me to transfer all the con-

cepts to Python using the open source data processing libraries such as Pan-

das and Numpy.
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Ranking Features

1 Std GSR (Lagrangian)
2 Mean fixation duration
3 Mean PD (Lagrangian)
4 Std PD (Lagrangian)
5 Std GSR (zscore)
6 No. of peaks PD (zscore)
7 Mean GSR (Lagrangian)

Table 5.1: Ranking of the finalized features.

Moreover, now as the code will do the processing in real time, I needed to

sync the data coming from GSR and the eye tracker in a 10s window for fur-

ther processing. Firstly, the two threads that were receiving the data from the

bio-sensors calls two different functions for filling the data into two separate

queues and these samples were synced using timestamps. I wrote a separate

function that compares the timestamp to verify that data in the queues are

in sync or not. If the timestamps don’t match then this function raises a flag

and stops the program. This extra step was necessary to avoid predicting on

wrongly synced data.

Next, these queues were sent to two different data processing functions so

that whole data can be processed in real time. Similar to processing Chapter

4, all the high-frequency noise gets removed from the signals using a low pass

filter, and the signals get standardized with the z-score calculation. After that,

low confidence gaze samples were replaced with the interpolated data and

fixations and saccades were getting calculated from that data. Here, all the

steps were similar to the offline testing which was done in Matlab.

Next, in the feature extraction part, the same seven features were calcu-

lated (Table 5.1), in parallel, from the processed data saved in two separate

queues — GSR signal queue and gaze signal queue. After the feature extrac-

73



Chapter 5: Real-Time Prediction

tion part, I needed to merge these features in order to feed them together in

the classifier. For that, I added a function which checks if all the seven fea-

tures are updated or not. If not, then it keeps on checking and hold calling

the classification model function; if all the features are updated, then it calls

the prediction model function and passes these features as an argument to

the function. This function helps in keeping the features in sync because in

a case where one thread is running faster than the other thread then there

is a chance where old values from the slower thread will be merged with the

newer values. For example, if the GSR thread finished calculating the features

earlier than the gaze thread or vice-versa, then the function would merge the

new GSR features with old gaze features. Therefore, I implemented this inter-

mediate function which was responsible for keeping the process in sync and

calling the classification model only when both the threads finished process-

ing.

To summarize, I implemented two intermediate verification functions —

(1) before the data processing; (2) before the classification. As the data is com-

ing in real time with different sampling frequencies and all the processing is

done in the real-time too using the multi-threading approach; therefore, there

was need to insert these verification processes to avoid any syncing mistakes.

Moreover, this step also makes my system robust.

Furthermore, before testing the real-time negative emotion detection sys-

tem, the final step was to skip re-training of the model every time I start the

process. For that, I trained the model separately and saved it using Pickle li-

brary in Python. Then, in the primary function, I called the saved model be-

fore starting the threads and used it for predictions.

Lastly, I examined the working of the model on an i 5 intel processor with

10 Gb RAM and checked for the latency. For that, I simulated the data receiv-

ing part with the saved data from the participants which means that instead of

receiving data from the bio-senors, I wrote a function that reads participants’
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raw data and feed it to the threads in precisely same frequency rate. Con-

sidering the bio-sensors API and the main Python function was independent,

it wouldn’t interfere or change the processing time of the primary function.

Moreover, this approach allowed me to compare the predicted results of the

real-time model with the offline model.

Now, with a 10s window and 60% overlap, the model was supposed to be

predicting in every 4s, ideally. After structuring, the final negative emotion

detection model was classifying in between every 4–4.5s with a maximum de-

lay of 0.5s and because, there was a 4s gap between each detection, 0.5s (worst

case) didn’t matter. Moreover, the detected results were approximately similar

to the offline model with ±3% difference.

5.3 Sending the Predicted Output

Till now, I created a real-time negative emotion detection model which gives a

prediction in every 4–4.5s. The next task was to sending these classified results

back to the visualization tool (in real-time), PivotSlice, for further processing

of generating a recommendation. For that, I again used UDP socket program-

ming approach for sending the data live from the Python program to Pivot-

Slice which is built Java. In the backend, I created a separate class in Java for

receiving the classified output and for further calculations. Again, this class

uses multi-threading technique to prevent any interference in the operations

done on the front end of the visualization interface.

Finally, this finishes creating the model on-the-fly and sending the de-

tected negative emotion back to the visualization tool. The next chapter will

discuss the process of analyzing these results and generating the recommen-

dations.
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Intervention

This chapter describes how I used the detected negative emotions to generate

meaningful recommendations. For that, let’s revisit the introduction chapter

first where I discussed the three essential steps — “when, what and how”; to

provide a recommendation. First, deciding when a user needs help and then

triggering the recommendation function. Next, determining the source of the

negative emotion (context) and then deciding what type of help is needed.

Finally, deciding how to provide the help by balancing the intrusion level. It

is crucial for the system to determine an intervention based on the intensity

of the detected negative emotion, where intensity represents the length of the

negative emotion. For example, glowing a help icon when the intensity is low

and increase the intrusion by popping up help when the intensity is high. In

the later section, I have discussed a method for calculating the intensity of the

negative emotion. Also, in this chapter, I explain in detail that how each of the

questions mentioned above can be solved using the classified emotion and

gaze location information as feedback to the system.

After all the signal processing and machine learning classification, I am

sending the final prediction to the PivotSlice interface as —T for true (negative

emotion) and F for false (normal state). Here, interface backend is receiving
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these outputs using the UDP socket programming approach and computing

“when, what and how” to intervene.

Additionally, observing these negative emotions for an individual user or

in a group could reveal some interesting trends in the visual analytic task. For

example, analyzing emotions of an individual for different visual analytic tasks

could give an insight of user’s problem-solving skills such as performance or

common areas where the user felt similar emotion. Similarly, there is a po-

tential of analyzing emotions of a group for a specific task or an interface for

determining the flow and use it for building a model which doesn’t need to

record emotions.

I have demonstrated some of the ideas on a specific interface, but these

ideas are generalizable for other visualization interfaces. Moreover, in this

chapter, I have also explored the design space of the interventions and rec-

ommendations that could potentially aid in the improvement of the users’

performance. The methods are explained in detail but only a few ideas were

implemented, and none of them were tested with the users due to time con-

straints.

6.1 Detecting When to Help

Every 4s, the visualization system is receiving the detected user’s current emo-

tional state in real-time. Also, saving these outputs in a list and monitoring the

sequence could potentially reflect the duration of emotion which could likely

indicate the intensity of emotion or could be useful in predicting user’s learn-

ing curve. For example, if the system has received constant T for more than 15

times (60s), then the negative emotional intensity is high compared to receiv-

ing 7 Ts in 60s.

Since the system is classifying user’s emotional state in every 4s, the next
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task was to trigger the suggestion function only when the system confidence

is high, rather than taking action every 4s. This is because taking actions ev-

ery 4s would make the system too sensitive, would consume more computa-

tional power and also could be tedious or annoying. Additionally, calculating

some confidence score would make the system robust towards wrong classi-

fications. Let’s think of the case where the system detected negative emotion,

and it is popping help in every 4s which diverts the analyst from his task and

inducing more negative emotion which system is reading again. For prevent-

ing this loop, there was a need to smooth the transition and trigger an action

only when the system is confident which can be determined by a rule-based

or a machine learning technique. Here, I used a rule-based method.

6.1.1 Action Transition Smoothing

Instead of taking action every 4s, I created a moving window of 32s (8 classifi-

cation in a window) to smooth the action transition and build up confidence.

The rationale behind choosing a 32s window was to provide enough data to

take a reasonable and meaningful action but also minimizing the risk of mix-

ing two separate emotions in a single window. Due to time constraints, I did

not investigate the optimum window size for this case and saved this part for

the future work.

The system is counting total Ts in the 32s window, and if total Ts are more

than a threshold value of 5 Ts (20 out of 32s), an action will be triggered. The

threshold is an average value based on the predicted output patterns observed

in the participants’ data. Also, taking a higher threshold would make the sys-

tem less sensitive and avoid taking actions on those short-term negative emo-

tions which lasts for less than 20s. This threshold could easily be tuned in fur-

ther testing, or even dynamically changed in real time. For example, if the user

repeatedly dismisses recommendations, the threshold may go up.
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If the total T are 5 or more in the window, an action is triggered. After that,

the system sleeps for next 60s before monitoring the next window. This pe-

riod allows users to look at the recommendation, use it and if it helped then

alleviate. Since negative emotions do not come back to the normal state right

away, therefore, the system should ignore the classification right after a rec-

ommendation has been displayed. This would also prevent the system to take

repetitive actions and avoiding a loop discussed above. The latency in trigger-

ing an action after the onset of a frustration event is dependent on the order

of detection as well as the window size of 32s. Actions are only triggered after

the window is filled with the detected outputs. The best case scenario is 20s

after the start of frustration and the worst case scenario is 32s. The following

examples demonstrate these cases:

F F F T T T T T — Best case scenario

T F F F T T T T — Worst case scenario

Here, the first sequence contains five constant Ts after three Fs. As soon as the

moving window counts the first T (at 4th place), it would take 20s to reach to

the final T (at last place) and then an action will be triggered. In the second

sequence, the moving window has to come till the end (8th place and 32s after)

after counting the first T (at 1st place) in order to trigger an action. Since the

goal was to detect long-term frustration states, this latency would not affect

the efficiency of the system. Also, the threshold value, which is 5 here, could

be reduced to adjust this latency.

6.1.2 Intensity of an Emotion

Another thing is to calculate the intensity of an emotion. As mentioned above,

calculating the intensity of detected negative emotion can be used to infer the

intrusion level. Here, a different sequence of T and F can tell the intensity
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Sequence Weight Distribution

T T T T F F F F 1+2+3+4 = 10
T F T F T F T F 1+1+1+1 = 4
F T T T T T T T 1+2+3+4+5+6+7 = 28

Table 6.1: Weight distribution of sequences. Calculating intensity of negative
emotion.

of the negative emotion or might also differentiate between types of negative

emotion. For example, following are the three cases where a sequence of T
and F are different in a window:

F T T T T T T T

T T T T F F F F

T F T F T F T F

In the first sequence, there is a constant occurrence of Ts after the first F. This

might be an indication that the user is feeling strong negative emotion. Next,

the number of Ts and Fs are same in the last two sequences, but the order-

ing is different. The first sequence has four constant T which means a high-

intensity negative emotion (short term) which faded afterwards and the sec-

ond sequence means light but consistent negative emotion. Since these two

negative emotions are different, therefore the help for these sequences should

be different too. Also, the variation in these two sequences might classify the

different type of negative emotion and could be explored in the future work.

To differentiate between the sequences, I have created a rule and assigned

non-uniform weights to T and calculated total weight for each window. The

rule is — any T after an F would have a weight 1 and any immediate T after

a T will have a weight one more than the previous T. Table 6.1 shows some

sequences and their weight distributions. By using this formula, I was able to

differentiate between various sequences and hence calculated the intensity of
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an emotion. Thus, now the system can condition the type of help based on the

intensity of an emotion.

6.2 Deciding What to Recommend

As mentioned in the introduction chapter, generating a meaningful recom-

mendation for helping users mainly relies on knowing what is making them

feel a negative emotion. In other words, knowing the context is important

here because a user can feel same emotion for different reasons. Based on

the user study results and the prediction model’s capability, I classified three

different contexts which are first identified by the proposed model and then

contextual help is generated. In visual analytic tasks, a user can feel negative

emotion due to the interface, dataset, or total disengagement. Knowing the

context would help in maximizing the chance of generating a useful recom-

mendation. For example, if a user is having problems with the new visual-

ization interface, then the system should not show any dataset-related help

for improving the understanding of the dataset. The help should be related

to the interface options or else the generated suggestion won’t be able to help

the user to overcome the issue and negative emotion. To differentiate between

each state, the system uses gaze location information and calculates centroid

point of the area of interest using fixations made in a particular window. Also,

adding more variable such as the location of the most extended fixation and

comparing the fixation time for deciding the context would be more robust

but was not implemented in this work.

Moving on, the classification was happening in a 10s window (600 gaze

samples) therefore, it was likely that the user’s gaze path would be more in-

clined towards the source of negative emotion on the inference. Also, observ-

ing the sequence in the 32s emotion window would help the system to decide

better. For example, if the system detects that a user is feeling a strong nega-
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Figure 6.1: The system is using gaze location information to determine where
the user was looking at the time of negative emotion. Later, the system is pro-
viding a recommendation based on that area. Top: Search panel related help,
and bottom: Info panel related help.
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tive emotion and out of eight times (total samples in the 32s emotion window),

five times the centroid was on the interface toolbar, then it implies that the

user might be having problems using the interface functionalities. Therefore,

a centroid point would decide what part of the interface made the user feel a

negative emotion. Figure 6.1 demonstrates system capabilities, with help of

an example, in finding the possible source of negative emotion with the help

of gaze location. In the Figure, the system is detecting the area on the inter-

face when a negative emotion was detected and displaying a dialog box. The

design dimensions of a recommendation, such as where to show the message

box and what color to use, are not studied in this work. The three context

classes are discussed in detail below:

6.2.1 Interface

An interface-related problem occurs when a user doesn’t understand the in-

terface functions and options. This type of problem may be more likely to

occur with a new interface or one with many functions on the screen. Also, in

the user study, all the participants were new to the interface, and even though

detailed instructions were demonstrated to them in the introductory session,

they used the interface manual often. Since going through the manual every

time is redundant, consumes time and a visual search task by itself, the design

of recommendations for the interface is thus focused on providing contextual

help on the screen to reduce the need to consult the interface manual (one of

the possible solutions is shown in Figure 6.1). This would prevent the users to

look away from the screen and hence would be an efficient way to sustain the

attention.
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6.2.2 Dataset

Dataset related problem occurs when dealing with a new, unfamiliar dataset

or a substantial multi-dimensional dataset. Here, showing interface-related

help is not meaningful. Instead, showing different operations that are possible

on the dataset could be one of the recommendations. Figure 6.2 demonstrates

a mock example where the system is suggesting that dataset can be merged to

get common information and also highlighting the button on the interface for

merging. Other ideas are, showing interesting parts in the dataset [47], data

tours, suggesting the user change the visualization view or highlighting hid-

den and unseen points in the dataset. Moreover, a step-by-step guidance is

also possible to help the user to carry out complicated operations.

6.2.3 Disengagement

Disengagement is the case when a user is not looking at the screen. In the

user study, I have observed that when participants felt frustrated or confused

for an extended period, they tend to look away from the screen (Figure 6.3).

Using voice dialogues can be helpful in re-orienting the user’s attention back

to the screen as done by D’Mello et al. [9]. That being said, in the real world

scenario, there are other factors could make the user look away and forcing

a user to look at the screen could be annoying. Again, it is difficult to say if

the voice-based recommendation would work in this cases or not. Therefore,

there is need to investigate this case in detail for suggesting better recommen-

dations, and I did not implement this case as it would require a separate study

to understand and identify different causes for disengagement. Hence, for this

work, the system can detect disengagement by analyzing the gaze data (loss

of eye tracking data for an extended period), but does not take any action.
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6.3 Deciding How to Recommend

Finally, after computing when to intervene and what to recommend based on

different contexts, the next and the final step is to show the help. Again, it

is crucial to display the suggestion in a way that it would not distract the user

from the task and would adjust the intrusion level according to the intensity of

the negative emotion. Deciding the way of showing a recommendation and

considering the intrusion level are the two major components discussed in

this section. A study [16], also mentioned in the related work chapter, talks

about the importance of considering the intrusion level in recommendation

systems because useful help can still be annoying if displayed in an intrusive

way.

For better understanding of the intrusion level, let’s consider an example

in the PivotSlice interface. If a user doesn’t know how to apply two or more

filters then the system can help in three possible ways: (1) Giving a hint by

displaying a short message over the search panel; (2) Break down the whole

process and guide the user by showing the instructions step-by-step; (3) Pause

the interface and open the instruction manual. All three ways can help the

user, but the question is which one is the best? One of the possible answers

can be to show help (1) when the emotional intensity is low, and the user needs

help for the first time. Help (2) is useful when intensity is medium, and the

user didn’t understand help (1). Help (3) is the extreme case where the user

is continuously getting confused with the filters functionality and therefore a

detailed understanding is needed, before going further. If the system shows

the same suggestion every time, then it won’t benefit the user and possibly

would overwhelmed the user leading to disengagement.
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6.3.1 Degree of Intervention and Guidance

Since I have calculated the intensity of the detected negative emotion in the

previous part using weights, I am using that to calculate how much to inter-

vene. The overall idea is, when negative emotion is detected, the system will

analyze it and compute how much to intervene based on the user’s actions.

For example, displaying a simple and less intrusive help when the intensity of

the emotion (weight) is low such as, highlighting options or displaying hints

about dataset on the side. Now, for adjusting the intrusion level, I illustrated a

simple approach — every suggestion can be tracked by the interface logging

to see if the users followed the recommendation or not. The system can alter

the guidance strategy based on this information. For example, if the sugges-

tion says to use the search bar for creating a filter, then the backend part of the

system can track if the search box was successfully used or not, after the help.

If the user has used the suggestion and the window weight (negative emo-

tion intensity) is less than the previous window that means the help worked.

If the user has used the suggestion and still the total weight of the window is

increasing or constant, that could mean the user needs more guidance, and

the intrusion level can be increased. Furthermore, if the system detects that a

user is feeling negative but not using the suggestion, that might be an indica-

tion the user doesn’t need that help. In this case, the system will display a new

help and keep the degree of intervention same.

In conclusion, this was the rule-based approach that I explored in term of

how a recommendation system should balance the intrusion level and what

factors a system should consider facilitating a suggestion. Again, replacing

this method with a machine learning approach may make the decision mak-

ing more effective, but this would require more data.
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6.3.2 Exploring Ways to Generate Recommendations

After discussing how to show a recommendation and what are the factors that

should be considered before intervening, the next step is to how to generate

a recommendation that would guide the users and helps them to sustain the

engagement. For this, I investigated three possible scenarios and I explain

below how a recommendation could be generated based on each scenario.

When the Task is Known: This case can be applied to a real-world job work

where the task remains the same and only the variable changes. For exam-

ple: examining a company’s progress using the same visualization settings

and same targets but with the new dataset or a newly hired data analyst trying

to understand relationships between different variables using past reports. In

other words, when the start and end points are known, and the path between

these points is unknown.

Here, when the task is known, then displaying task-related help is possible

and can be valuable. In this case, the system can direct the user to the right

path and help the user to solve a particular task. Chances of recommendation

success are higher as system knows the form of final expected result but the

suggestions not generalizable as the system is designed to solve a particular

type of task and can only generate recommendations which are related to that

dataset type and task.

When the Task is Unknown: Since the task is unknown, the system also doesn’t

know how it can be solved or what to expect in the end. Therefore, the sys-

tem can only show general suggestions. For example, a system could make a

dataset suggestion to show outliers, or to reveal data similar to the data cur-

rently in the view. These data driven suggestions may be applicable to many

tasks. In this case, the recommendations can only help users to understand

the interface or dataset options and explore the possibilities, but the support

may or may not direct them to the right path for solving the task. Here, the

recommendations are more generalizable as they are task independent but
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are not direct.

When Logs are Available: Here, the system uses data from previous users to

decide on a recommendation for the current user in a particular scenario. For

example, if most of the previous users felt confusion in the beginning and took

a similar approach to overcome the confusion then for the next person, the

system will analyze this trend and generate a recommendation based on the

typical approach. This case is task independent and analysis the trends from

the past logs to generate a recommendation. I believe that this is the best op-

tion because it increases the chances of generating a meaningful recommen-

dation, and also, the recommendations can be generalizable.

In summary, I discussed and demonstrated some ideas about how the three

key steps, “when, what and how”, can be answered using emotions as feed-

back. Also, I explored the intervention design space and went over the possi-

ble cases to generate automatic recommendations.
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Conclusion

This chapter will summarize this thesis by discussing the contribution, the

limitations of the work followed by some open-ended ideas for future projects.

The goal of this work was to develop a recommendation system for visual an-

alytic tasks which could leverage a mixed-initiative interaction approach for

generating meaningful recommendations to sustain engagement. For that,

I used bio-signals of negative emotions as implicit feedback to improve the

human-computer interaction and make the overall process bi-directional. In

other words, a user exhibits negative emotion (frustration, confusion, or anger)

while working on a visual analytic task and the system detects those emotions

and reacts accordingly. Note that, I only considered extreme negative emo-

tion such as frustration, confusion and anger. Other negative emotions like

fear, disgust and sadness were out of the scope of this thesis.

7.1 Contributions

As mentioned in the introduction chapter, there are three main contributions

of this work. I will review each of them to show how I fulfilled those require-
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ments.

Selecting least intrusive bio-sensors for recording user’s emotional responses:

For detecting emotions, I needed to use some bio-sensors so that I could record

the users’ body signals while they perform a visual analytic task and later use

them for developing a negative emotion detection classifier. After a thorough

investigation, I selected GSR and eye tracker for recording users’ body signals.

The GSR was responsible for calculating arousal, and the eye tracker was to

measure the valence. Also, these two devices didn’t require any difficult setup

or calibration. The GSR was simply worn like a wristwatch and didn’t require

any calibration whereas the eye tracker was placed below the participant’s

monitor and only needed a 10s calibration. Out of all the available devices

in my knowledge, I found the combination of these two devices was sufficient

for detecting negative emotions, like frustration, and were least distracting.

Making an on-the-fly negative emotion detector: After selecting the sensors,

I designed a user study for collecting the data from 28 participants. Again,

the data was to train the machine learning classifier. Before building an on-

line model which would detect emotion in real-time, I first tested the dataset

offline where I used Matlab and Python for data processing, feature extrac-

tion and building the classifier. I tested the dataset with various supervised

machine learning models and compared the recall score. Out of all the classi-

fiers, the random forest model achieved the highest recall score, and was able

to differentiate between negative emotion and normal state 88% of the time.

Next, I optimized the model by selecting the seven most contributing features.

After that, I merged all the operation functions in Python and used UDP socket

programming to transfer the data in real-time. I simulated data from the par-

ticipants to compare the accuracy of the online model with the offline model.

The final online model was predicting an emotion in every 4s.

Solving the three key points to generate a recommendation — “when, what

and how”: After building a real-time negative emotion detection classifier, the
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last step was to use this information to answer when to show a intervene, what

help to show based on the context and how to show the recommendation. For

that, I first created a communication bridge between the PivotSlice interface

and the machine learning model using UDP socket programming. Next, I de-

signed a rule-based approach which uses the predicted emotions to decide

when to show help. Moreover, I used gaze location information for detecting

the context, interface based or dataset based, for deciding what kind of help

should be provided. Lastly, I explored various intervention styles to answer

how a recommendation should be displayed while also considering the emo-

tional intensity and the intrusion level.

7.2 Limitations

While the final proposed model demonstrated the idea of creating a mixed-

initiative interaction using emotions and I included different verification steps,

the project still builds on some assumptions and biases which I am going to

discuss in this part. Firstly, the experiment was conducted in a controlled en-

vironment where the lighting condition was constant. This step was necessary

because pupils are very sensitive towards change in lights and any variation

in pupil size due to the lighting condition would have altered the dataset val-

ues. Next, the final dataset was consisting of 26 males and 2 females which

results in unbalanced gender ratio. Emotional responses work differently for

men and women [22], and therefore, this gender bias in the dataset could af-

fect the results. Also, it was difficult to prove the high amount of false positive

detection rate as I could only hypothesize based on some observations in the

dataset but couldn’t confirm.

Furthermore, it was difficult to tell if the participants were feeling a nega-

tive emotion because of the tasks or any other personal reasons. This limita-

tion is unavoidable as for privacy reasons I did not ask participants about their
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personal life before the experiment. The participants were informed that they

could withdraw their names from the study anytime (during or after) for any

reason.

I used the oversampling technique to generate artificial data for balanc-

ing the classes in the final dataset. Although the oversampling technique is

widespread in the machine learning field, still every individual exhibits a dif-

ferent range of body signals and emotions. The artificial data cannot account

for every case and therefore, cannot be as accurate as real data. Lastly, the

design of appropriate interventions was not tested as a follow-up study was

outside the scope of this thesis.

7.3 Future Work

Since there are some assumptions and limitations in the project, these gaps

can be further studied and updated in the future work. The first task can be

to compute and compare the results with a larger dataset which is gender bal-

anced. The results could open some exciting paths such as comparing the

emotional response between males and females. Moreover, comparing the

results based on professional background, expertise, type of the task, or test-

ing the new dataset with neural networks could also bring out some trends.

Also, instead of using oversampling, it may be better to apply undersampling

on the larger dataset to avoid artificial data in training.

Furthermore, the intervention chapter can be extended to a full-sized the-

sis project which could include: (1) using machine learning approach in place

of weight distribution method (rule-based technique) for finding the intensity

of an emotion. The machine learning models could make the system more

flexible towards any unexpected cases. (2) Exploring the disengagement con-

text into further parts and study how the dialogue-based recommendations

can be helpful. (3) Identifying different types of negative emotions from the
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sequence of predicted output such as confusion, anger or frustration. Right

now, I am calculating different weights for each sequence, and these weights

might be helpful in understanding various negative emotions. (4) Testing the

final recommendations system and the intrusion level on the users.

7.4 Conclusion

This thesis argued that recommendation systems need to understand user’s

side to answer “when, what and how” to intervene as well as to sustain en-

gagement. The existing guidance systems use implicit or explicit or hybrid

signals as feedback to learn about the user but have failed to understand user’s

feelings. Here, I demonstrated an idea of classifying negative emotions, as de-

tected through physiological signals, and used them as implicit feedback for

a better understanding of the user’s mental state to generate useful recom-

mendations while also monitoring the intrusion level. Moreover, I explored

this concept to fill the gaps in the existing recommendation techniques with

affective computing. Finally, I successfully built a working recommendation

model in visual analytic which uses detected emotions for deciding how to

provide the guidance. This project contributes to the better understanding of

mixed-initiative interactions and opens up ample of future research opportu-

nities.
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