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Abstract
The paper describes an efficient model to detect negative
mind states caused by visual analytics tasks. We have de-
veloped a method for collecting data from multiple sensors,
including GSR and eye-tracking, and quickly generating la-
belled training data for the machine learning model. Using
this method we have created a dataset from 28 participants
carrying out intentionally difficult visualization tasks. We
have concluded the paper by a discussing the best perform-
ing model, Random Forest, and its future applications for
providing just-in-time assistance for visual analytics.
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Introduction
Data analysis is a challenging task which can become frus-
trating when dealing with an unfamiliar dataset or a new
analysis tool or visualization. Also, working in a real-world
scenario with deadlines can increase the cognitive load of
the user. As a result, the likelihood of disengagement or
making mistakes increases. Therefore, the motivation of
this work is to detect these negative emotions so that, in



future, we could use this model to provide appropriate in-
terventions to help the analysts on-the-fly. For example, if
a user feels confused or frustrated during the task then the
system should be able to detect it and provide a suitable
help appropriate to the cause of frustration.

A user’s emotional state can be detected by capturing the
data from physiological sensors (e.g. electroencephalogram
(EEG), electrocardiogram (ECG) and, skin conductance)
or physical sensors (e.g. facial expression, speech, body
posture and gaze tracking) or a combination of both. When
selecting between various biometric sensor options, we pri-
oritized those which were less intrusive and less likely to
cause discomfort. Finally, we decided to use the combina-
tion of a galvanic skin response device (GSR) and an eye
tracker to measure arousal and valence.

It is likely that in analytics tasks, both the detected features
(e.g., gaze scan-paths) and the related emotional intensities
will be different than when reading a text, looking at an im-
age, or playing a video game. Therefore, a specific model
for this scenario is required. Using two types of sensors,
we created a dataset and model from 28 participants per-
forming visual analytics tasks with a visualization interface
called PivotSlice [14] (see Figure 3).

Experimental Setup

Room: The user study was
conducted in a private room
with controlled lighting. The
researchers observed the
participants from an adjacent
room to minimize pressure or
distraction due to observa-
tion.

Hardware: Shimmer GSR
(5Hz) was used to record
the skin conductivity and
Tobii X60 eye tracker (60Hz)
was used for tracking gaze
information.

Signals: Skin conductance,
pupil diameter and gaze
location.

Visualization Tool: Pivot-
Slice[14] is an open source
toolkit which uses scatter
plot-like representation for
visualizing multidimensional
data. The interface allows
users to customize the out-
puts by applying multiple
filters. We have modified the
user interface according to
our study design (Fig 3).

Tasks: 2 practice and 4 main
analytics tasks. Main tasks
were designed in increasing
level of difficulty.

Related Work
Past research in affective computing has investigated de-
tecting negative emotions or disengagement such as mind-
wandering (MW), stress and frustration. Bixler et al. [1]
demonstrated a technique for detecting MW using 3 types
of gaze features for a supervised classifier: global, local
and contextual. They achieved 72% accuracy in detecting
MW during reading. Thus, an eye tracker is an unobtrusive
but effective device for detecting mind states. Moreover, a
survey by Sharma et al. [11] compared the performance of

different signals and algorithms for identifying stress. They
compared 13 possible physiological and physical signals
and concluded that heart rate variance (HRV) outperforms
every other signal for stress detection, followed by EEG
then GSR. For our study, we investigated these signals and
finalized on GSR as it is very easy to setup and gives the
least amount of noise. Many works use a combination of
biometric devices to achieve better accuracy, and have pro-
posed on-the-fly models [8, 9].

Voigt et al. [12] have discussed some of the challenges of
data scale and proposed a context-aware recommenda-
tion algorithm which leverages online annotations to provide
help. Similarly, Gotz et al. [5] generate recommendations
in visualization, driven by the user behaviour (implicate
signals) and successfully reduced overall task completion
times and errors. There are other papers which predicted
user’s learning curve on-the-fly and provided help accord-
ingly for visualization tasks [2, 7]. Finally, Hung et al. [6]
assert the importance of user engagement in information
visualization and propose a self-assessment questionnaire.

In initial investigations, we found that eye-tracking alone
was susceptible to loss of data in long-duration tasks due to
head movement. Based on this and the results of previous
studies, we selected GSR and eye tracking as our sensors.
The combination of these two devices was likely to provide
stable data for the detection of emotional arousal and va-
lence with minimal physical intervention. Most research
in the area of emotionally-responsive interfaces target ap-
plications such as gaming, intelligent tutoring system and
on-screen reading. We build on past work in eye tracking
and visualization [4] to build a multi-sensor system to detect
negative mind states specifically for visualization tasks.



Data Collection Study
After refining the setup in a pilot study with 7 participants,
we recruited 32 university students in the third year of study
and higher, from our local faculty of science. Due to hard-
ware issues, we had to discard the data from 4, leaving 28
final participants (26 male, 2 female, mean age 24). We
note the imbalanced gender ratio could limit the generaliz-
ability, and will be addressed in future. Figure 1 shows the
setup. To get the emotional responses closer to the real
world scenario, we made the analysis tasks more engaging
using gamification. Participants were instructed that their
compensation depended on their performance (completion
time and the number of errors).

Figure 1: Experimental setup.

Figure 2: GSR signal. Left: raw
data (x); Right: standardized data
using xstd = (x− µ)/σ; µ and σ
are the mean and standard
deviation of the window.

The session was divided into three parts: introduction, per-
forming the tasks, and retrospective think aloud. The in-
troduction consisted of attaching and calibrating the GSR,
followed by a brief introduction about the tasks and inter-
face, PivotSlice. The introduction took approximately 13
minutes and allowed participants to get comfortable with the
GSR device attached to their wrist. Next, participants com-
pleted two practice tasks. This step was essential to reduce
measurement of emotional responses due to unfamiliarity
with the interface. Also, a reference handout (2 pages) was
available throughout the experiment in case the participant
forgot any of the interface functions. Finally, participants
carried 4 main tasks, in increasing order of complexity.

We needed to determine ground truth moments of negative
emotion for training a classifier. However, asking partici-
pants to label 25 minutes of video would be tedious and
error-prone. In pilot testing we developed a simplified clas-
sifier to detect time points in which the GSR signal shows
significant change — these points became the candidate
times for labelling emotion in a retrospective think aloud.
Participants were shown video from the top 7 candidate

Figure 3: PivotSlice interface [14]. (a) Search Panel, (b) Task
Panel, (c) Information Panel , (d) Unfiltered data region, (e) Filter
axes, (f) Filtered data region.

time points and asked to narrate what was happening at
that time, and specifically what their emotional state was.
When a emotion was mentioned, all data windows in which
the time point appears, and any other peaks in the data
stream within 1 minute of the selected time point, were la-
belled with the emotion. The expansion of the labelled time
period to include any adjacent peaks was used to increase
the amount of accurately labelled data without requiring
additional effort from the participant.

While we acknowledge that not annotating full dataset may
affect performance, our hypothesis was that our method
would capture sufficient data samples for appropriately
recognizing significant emotional reactions. We have dis-
cussed the potential impacts of partial data labelling in a
later section. As we are interested in negative emotions, we
dropped all positive emotion events from our dataset.



Preprocessing and Feature Extraction
First, high-frequency noise from the GSR and pupil data
were removed with a low-pass filter. Next, samples flagged
by the Tobii SDK as low confidence (due to blinking and
head movement) were counted (for future processing), then
replaced using linear interpolation of adjacent values to
generate the final dataset for the feature extraction.

Training and testing datasets were created by sampling fea-
ture values using a moving window across the data streams
from the sensors. We tested our model with 5s and 10s
window sizes, also, with different overlap values ranging
from 50% to 75%. Finally, the best accuracy we achieved
with a 10s window with 60% overlap. 21 features were ex-
tracted from the dataset: 8 from the pupil size, 5 from gaze
location, and 8 from the GSR data. Details about each fea-
ture are in the following subsection.

Figure 4: Top: Standardized GSR
data; Bottom: peak detected in the
signal using Lagrangian
interpolation.

R Feature

1 Std GSR (Lagrangian)
2 Mean fixation duration
3 Mean PD (Lagrangian)
4 Std PD (Lagrangian)
5 Std GSR (zscore)
6 No. of peaks PD (zscore)
7 Mean GSR (Lagrangian)

Table 1: Rank (R) of the final
features.

Pupil Dilation (PD) and Skin Conductance (GSR)
Raw data is not generalizable as every individual has a dif-
ferent baseline and therefore cannot be used for training.
We used a standardization method by calculating the z-
score to scale the baseline without losing the nature of the
data (Figure 2). This technique is an alternative to normal-
ization and works best in sliding windows. After scaling the
data, total 4 features from each signal were calculated —
mean, standard deviation, number of peaks and sum of the
height of the peaks. The data is linear and any change in
the baseline would affect these values.

Next, we calculated 7-point second-order Lagrangian inter-
polation for finding the points where the signals changed
relative to the baseline [13] (Figure 4):

g′′[n] = 2000 ∗ 2g[n+3]+g[n+2]−2g[n+1]−2g[n]−2g[n−1]+g[n−2]+2g[n−3]
20h2

Here, g[n] represents the value at index n in the standard-
ized list and h is the sampling frequency of the device.

There are several other algorithms that can be used for the
same such as wavelet transformation, Fourier transforma-
tion and CUSUM algorithm. Again, the 4 features; mean,
standard deviation, number of peaks and sum of the height
of the peaks; were calculated.

Gaze Location Information
We used the gaze location information to calculate the fo-
cus point, called a fixation, and the distance between two
focus points is a saccade. Just as prior work on reading tar-
geted sequential fixations as indicative of that task [1], we
target features which may be useful for visualization. For
example, too many saccades and fewer fixations may indi-
cate visual searching related to confusion or frustration. We
applied the method of Olsson [10] to calculate fixations and
saccades between two consecutive sliding inner windows.

mbefore(n) =

[
1

r

r∑
k=1

sx(n− k),
1

r

r∑
k=1

sy(n− k)

]

mafter(n) =

[
1

r

r∑
k=1

sx(n+ k),
1

r

r∑
k=1

sy(n+ k)

]
where sx represents gaze location in x axis and sy is gaze
location in y axis in a window, n is the sample of interest,
and r is the inner window size (5s). The distance d was
calculated at every sample in the eye tracking data by,

d(n) =
√
(mafter(n)−mbefore(n)).(mafter(n)−mbefore(n))T

where d is the gaze distance in window n. All distance
values which were more than the standard deviation of
distances were marked as saccades. Fixations were cal-
culated by finding the median of the samples between 2
saccades. After calculation of the fixations and saccades,
we derived 4 features: number of fixations, mean saccade
length, mean fixation duration and standard deviation of



fixation points from the centroid of fixations in the window
(indicating the extent of the area of interest).

The final feature was the total number of samples where
the eye tracking failed (number of blinking and head move-
ment samples). A high value for this feature might indicate
that the participant is not looking at the screen.

We wanted our model to be fast, as we will use this model
in the future to classify states on-the-fly. To reduce the fea-
ture set size, we used a brute force technique to test in-
creasingly large feature combinations. After a certain num-
ber of combinations, the accuracy remained approximately
constant. All remaining features were dropped. The ranking
of the 7 final features is shown in Table 1.

Models Recall score

KNN 55%
SVM 67%
RF 88%

Table 2: Recall score of the event
class with different classification
models.[

171 25
1 44

] [
137 45
0 28

]
[
199 39
2 25

] [
236 16
2 20

]

Table 3: Confusion matrices of RF
classification from 4 different
participants. 1st column represents
non-event and 2nd column is
negative response.

Feature Non-Event Event

0.066 1.787
σGSR 0.403 1.636

0.228 1.045
98.166 30.947

MFD 53.545 21.071
117.60 34.764

Table 4: Samples of noticeable
changes in standard deviation of
GSR and mean fixation duration
(MFD) from non-event to event
class in case of frustration in
different participants.

Classification Model and Results
We tested our dataset with several supervised classification
models using n-fold cross-validation where n is the total
number of participants. The classification models were built
in python using the scikit-learn library — k nearest neigh-
bour (KNN), support vector machine (SVM) and random for-
est (RF). We also tested the dataset with neural networks,
but it failed due to lack of enough training data.

As most of the time people are not exhibiting a strong neg-
ative emotion, our event and non-event classes were un-
balanced (1:12), which can affect classifier accuracy. To
solve this rare event detection problem, we generated ar-
tificial data for balancing the classes using the Synthetic
Minority Over-sampling Technique (SMOTE) [3]. We only
applied SMOTE algorithm to adjust the training data and
kept the original unbalanced data for testing. Since the test
data was similarly imbalanced, rather than simple accuracy
(which would be high even for a naive classifier), we report
the confusion matrices and negative emotion recall scores.

We achieved the best recall score (high detection of true
negative emotion states), 88%, using a random forest clas-
sifier with 1,000 trees and max depth 4. Table 2 shows the
recall scores of all the classifiers we tested. Table 3 shows
4 confusion matrices from 4 random participants. Using
the first example from the table, 171 are the non-event
(true negative), 25 are false positive, 1 is false negative
and 44 represent negative emotions (true positive). The
higher false positive rate indicates that positive events were
missed in training data as they were not in the top 7 events
discussed in the think-aloud session. As we envision an
application providing a variety of types of assistance, pro-
viding unwanted help (false positive) is less problematic, if
designed well, than missing potential moments of frustration
and confusion (false negative).

Discussion and Work-in-Progress
To understand our model, we investigated some frustration
events in detail. 23 participants reported frustration in the fi-
nal task, which was designed to be difficult. We found some
noticeable changes in feature values during these periods,
which contributed to our model detecting negative states.
Table 4 shows some σGSR signals and mean fixation du-
rations during transitions from non-event (regular) to event
(negative emotion) states for the final task. While these fea-
tures alone were not sufficient for classifier performance,
they provide some insight into the feature changes during
frustration events: participants arousal level increases along
with the decrease in the mean fixation duration.

This work builds the foundation for an on-the-fly system to
identify negative emotions. In ongoing work, we are using
this information to explore the design space of appropri-
ate interventions to ease frustration in visualization tasks.
For example, gaze information can be used to guess the
source of frustration, such as the interface widgets or some



subset of data items. Interventions may range from provid-
ing helpful hints about interface components to suggesting
new subsets of data to explore. We aim to create a mixed-
initiative interaction mechanism to help to the user and pre-
vent disengagement due to frustration.
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