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Figure 1: (a) Traditional physical smartphone typing and (b) STAR, a bare-hand, two-thumb text entry method in augmented 
reality. STAR transfers the two-thumb typing skills learned from using a physical smartphone to bare-hand AR typing. 

ABSTRACT 
While text entry is an essential and frequent task in Augmented 
Reality (AR) applications, devising an efcient and easy-to-use text 
entry method for AR remains an open challenge. This research 
presents STAR, a smartphone-analogous AR text entry technique 
that leverages a user’s familiarity with smartphone two-thumb 
typing. With STAR, a user performs thumb typing on a virtual 
QWERTY keyboard that is overlain on the skin of their hands. 
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During an evaluation study of STAR, participants achieved a mean 
typing speed of 21.9 WPM (i.e., 56% of their smartphone typing 
speed), and a mean error rate of 0.3% after 30 minutes of practice. 
We further analyze the major factors implicated in the performance 
gap between STAR and smartphone typing, and discuss ways this 
gap could be narrowed. 
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1 INTRODUCTION 
Recent advancements in Augmented Reality (AR) hardware and 
display technologies (e.g., glasses [24, 46, 58]) have opened up new 
opportunities for utilizing AR in various felds such as remote work, 
health care, and education [6, 52, 63]. However, despite the growing 
need for text entry in AR environments, devising an efcient and 
easy-to-use text entry solution remains an open challenge. 

While researchers have developed several techniques to enable 
bare-hand text entry for unrestrained AR activities, prior bare-hand 
AR text entry techniques such as mid-air hand typing [19, 45, 72], 
eye typing [38, 43], or tapping on a fngertip [69, 70] are unfamil-
iar to users as they are drastically diferent from today’s typing 
methods. In addition, common bare-hand AR text entry techniques 
often lack the haptic feedback delivered when one touches a physi-
cal surface. For example, the Microsoft Hololens 2 AR text entry 
method [19] requires users to touch a mid-air virtual keyboard us-
ing their fngers, without any haptic feedback. This lack of surface 
haptics has been found to impact input accuracy, typing speeds, 
and user fatigue [2, 13, 28, 32]. 

Herein, we present STAR, a novel bare-hand AR text entry tech-
nique that capitalizes on users’ familiarity with two-thumb typing 
(i.e., both hands holding a smartphone while both thumbs are typ-
ing). Due to the ubiquity of smartphones, two-thumb typing is a 
familiar and rapid form of input for most people [47, 57, 65], even 
approaching the performance of desktop QWERTY keyboard typ-
ing for some users [21, 47]. Our work explores how this familiar 
skill could be transferred to a bare-hand AR text entry. While it 
may not be possible to match the typing performance of smart-
phones with a bare-hand technique, we believe the performance 
gap between the two can be closed by leveraging the same skills of 
two-thumb typing. 

To use STAR, one forms a “knuckle posture” with their hands 
(Figure 1b) as if holding a smartphone, which triggers the display of 
a mini virtual QWERTY keyboard on the user’s hand through the 
Head-Mounted Display (HMD) they are wearing. STAR then enables 
the user to leverage the haptic feedback of touching their own skin 
to two-thumb type on this keyboard. If the user wishes to transition 
onto other tasks, they can seamlessly release the knuckle posture 
and the keyboard vanishes. The knuckle posture is an explicit mode-
switching technique that prevents false activations. Further, STAR 
is expected to be more socially acceptable compared to other bare-
hand text entry techniques because the smartphone-typing gesture 
naturally conveys the user’s state of typing to others [20, 68]. 

In an empirical evaluation, STAR showed an efcient text entry 
performance with a mean typing speed of 21.9 words per minute 
(WPM) and a mean error rate of 0.3%. This is 56% of smartphones 
typing speed, after only 30 minutes of practice. We further discuss 
ways to narrow the performance gap between STAR and physical 
smartphone typing based on the collected typing data and subjective 
user feedback. 

The main contributions are as follows: 

• We present STAR, a novel on-skin, smartphone-analogous 
AR text entry technique that leverages existing typing skills 
from a physical smartphone. 

• We explore the transferability of two-thumb typing skills 
to AR. In an elicitation study with 29 participants, three 

diferent hand postures were discovered for typing on an 
imaginary smartphone on their skin. These postures, along 
with other design parameters, were then tested to ensure 
sufcient skill transfer from smartphone typing to STAR. 

• An analysis of the performance delta between STAR and 
smartphone typing reveals that improved hand tracking and 
thumb tap sensing may provide an opportunity for STAR 
to achieve typing performance closer to that of a physical 
smartphone. 

2 RELATED WORK 
We frst review the literature on large-scale datasets that have been 
used to characterize smartphone typing skills. Subsequently, we 
discuss on-body interactions and skill transfer. Lastly, we scrutinize 
text entry techniques proposed for HMD-based AR and position 
STAR among them. 

2.1 Smartphone Typing Skills 
Due to the ubiquity of smartphones, smartphone typing has become 
a familiar and rapid form of input for most users [47, 57, 65]. Com-
mon smartphone text entry techniques involve the coordinated 
tapping of user’s thumbs on a miniature QWERTY keyboard. 

Palin et al. [47] presented a large-scale dataset of mobile text en-
try input collected from a web-based transcription task with 37,370 
volunteers (mean age: 24.1). The mean typing speed was 36.2 WPM 
with 2.3% uncorrected errors and the fastest typists reached over 
80 WPM, approaching the performance levels of desktop QWERTY 
keyboard typing, which has been found to have a mean typing 
speed of 51.6 WPM [17] and the fastest speed up to 130 WPM [49]. 
Over 82% of participants used two thumbs to type, which was sig-
nifcantly faster than using one fnger (i.e., 37.7 vs. 29.2 WPM). The 
mean typing speed was similar between genders (i.e., ~36.1 WPM 
for both men and women) but difered between age groups (i.e., 
39.6 WPM for 10-19 years old vs. 26.3 WPM for 50-59 years old). 
Although it may not be possible to match the same typing perfor-
mance with bare-hand techniques, STAR aims to narrow the gap by 
leveraging the pervasive skills of smartphone two-thumb typing. 

2.2 On-Body Interactions and Skill Transfer 
Using the body surface as an input space has been a long-standing 
interaction paradigm. For example, Harrison et al. [27] presented 
Skinput, an interaction using skin as an always-available input 
surface. Imaginary Phone [26] proposed using the skin on one’s 
hand as a touch input surface and suggested “transfer learning”, 
i.e., by using a physical smartphone, a user inadvertently learns 
the interface and can then transfer that knowledge to an imaginary 
interface on the surface of their hand. Gustafson et al. [26] noted 
that “the transfer model is viable, even though full accuracy will 
not be redeemed until higher resolution tracking equipment becomes 
available”. STAR leverages this same concept by supporting the 
transfer of learning from physical smartphone typing to virtual 
bare-hand typing. 

2.3 Text Entry in HMD-based AR 
The proposed text entry techniques for HMDs were often motivated 
by AR and VR applications, with some techniques [19, 38, 60] being 
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Typing Level Speed Error Technique Modality Training Amount Traits letter word (WPM) (%) 
Controller Pointing [60] Handheld ✓ 15.4 1.0 5 minutes Need to 
Word-Gesture controllers 16.4 15.6C [12]  ✓ None hold controllers 

EyeSwipe [38] ✓ ✓ 11.7 1.3 30 minutes Impacts natural viewing, iText [43] Head W   + Eye ✓ 13.8 1.5  72 phrases (4 days) induce W eye fatigueGlanceWriter [15] ✓ ✓ 10.9 2.7 10 minutes 

Speech Recognition [53] Speech ✓ 179 4.4 10 phrases Raise privacy concern 

Vulture [45] W ✓ 28.1 1.7  48 phrases 
ATK [72] ✓ 29.2 0.4W 5 minutes + 45 phrasesMid-air hand  

 Induce arm fatigue, FastType [61] ✓ 22.3P 2.3v  minutesement  15mo   lack haptic feedback VISAR [19] ✓ ✓ 17.8 0.6 80 phrases 
ThumbAir [23] ✓ 13.7 1.2 140 words + 35 phrases 
QwertyRing [25] ✓ 20.6 1.3 120 phrases (4 days) Finger taps on Rely on TapType L L [62] physical surface ✓ ✓ 19.2/9.0 0.6/0.4 35 phrases 

  probabilistic decoder TypeAnywhere [62] ✓ 70.6 1.5 120 m. + 80 ph. (4 days) 
PalmType [64] ✓ 7.7 1.6 (not specifed) Require users to learn DigiTouch [66] On-skin ✓ ✓ 16.0 0.9 180 minutes new interaction paradigms, TipText [70] fnger touch ✓ 13.3 0.3 30 phrases use custom hardware BiTipText [69] ✓ 25 0.03 30 phrases 

On-skin Leverages familiar STAR ✓ ✓ 21.9 0.3 30 minutes thumb taps smartphone typing skills 

Table 1: Overview of text entry techniques proposed for, or potentially usable in, HMD-based AR. The table compares these 
techniques along the following dimensions: modality, supported typing level (i.e., letter-level or word-level), mean typing 
speed, mean error rate, amount of training needed, and traits of the technique. Error indicates character-level uncorrected 
error rates unless specifed (C denotes character-level corrected error rates, and W denotes word-level uncorrected error 
rates). P denotes peak typing speed that was measured by a repeated typing of the same word. L denotes mean typing speed 
with test phrases including Out-Of-Vocabulary (OOV) words, requiring letter-by-letter typing. It is important to note that the 
performance diference between each method may also be infuenced by additional factors such as the input technology (i.e., 
sensing accuracy), the specifc set of test phrases, the probabilistic decoder implemented, or the keyboard layout used. 

usable in both domains. Herein, we review text entry techniques 
proposed for, or potentially usable in, HMD-based AR systems 
which leverage input modalities such as controller, gaze, speech, 
mid-air hand movements, fnger tapping on physical surfaces, or 
on-skin touches (Table 1). 

2.3.1 Handheld Controllers. Text entry techniques using handheld 
controllers [7, 12, 60] have been widely adopted in consumer VR 
applications. Research has shown that controller-based text entry 
is often fast and easy to learn, with users reaching a mean typing 
speed of 15.4 WPM after only 5 minutes of practice [60]. While 
techniques with controllers can work well for VR applications that 
support a defned activity in a fxed space, the constant need to 
hold controllers and their limited battery life prevents widespread 
use in more ubiquitous AR situations. 

2.3.2 Eye Gaze. Modern consumer HMDs (e.g., Hololens 2 and 
Meta Quest Pro) that support eye tracking presents subtle input 
using gaze-based techniques [15, 22, 38, 43]. EyeSwipe [38], for ex-
ample, enabled gaze-only gesture-based typing with a mean typing 
speed of 11.7 WPM and a mean error rate of ~1% after 30 minutes 
of practice. Recently, Lu et al. [43] proposed using head rotation for 

pointing and eye blinking for selection, achieving a mean typing 
speed of 13.8 WPM and a mean error rate of ~1.5% after 72 phrases 
of practice over four days. Although text entry with eye and head 
movements supports subtle interaction, such techniques impact 
natural viewing and sufer from eye fatigue [5, 14, 31, 39]. 

2.3.3 Speech. Text entry using speech recognition via the built-
in microphones within HMDs has been considered an efcient 
method for text input [8, 51, 53, 55]. Ruan et al. [53] showed that 
a deep learning-based speech recognition system could achieve 
a mean text entry speed of 179 WPM and a mean error rate of 
~4.4%. However, speech recognition is known to be unstable in 
noisy environments [51], and the use of speech raises privacy and 
social acceptability concerns [55]. 

2.3.4 Mid-Air Hand Movement. Several mid-air hand typing tech-
niques have been proposed for unrestrained bare-hand AR activities. 
For example, Vulture [45] enabled mid-air gesture swipe typing 
using a fnger pinch that was tracked with an Optitrack motion 
tracking system. Although only word-level input was supported 
with this technique (i.e., letter-by-letter typing was not supported), 
it yielded a mean typing speed of 28.1 WPM with a mean error 

https://0.6/0.4L
https://19.2/9.0L
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rate of ~2% after practice with 48 phrases. ATK [72] used a Leap 
Motion sensor to enable mid-air ten-fnger typing with a proba-
bilistic tap detection algorithm for each fnger. Likewise, although 
only word-level typing was supported, ATK was found to have 
a mean typing speed of 29.2 WPM and a mean error rate of 0.4% 
after practice with 45+ phrases. ThumbAir [23] typing using in-air 
two-thumb movements has recently shown a mean typing speed of 
13.7 WPM with a mean error rate of 1.2% after practicing 140 words 
and 35 phrases. Dudley et al. [19] proposed VISAR, which used 
direct fnger touch on a mid-air virtual keyboard for both letter-
and word-level typing. VISAR was found to have a mean typing 
speed of 17.8 WPM with a mean error rate of ~0.6% after practice 
with 80 phrases. It is currently the default text entry method in 
Microsoft Hololens 2. While these results are impressive, typing 
in mid-air lacks the haptic feedback that is generated when one 
touches a physical surface. The lack of surface haptics has been 
shown to induce signifcant arm and hand fatigue [2, 13, 28, 32]. 
In addition, mid-air gestures typically require users to keep their 
hands raised at eye level, resulting in arm weariness and potential 
social acceptability concerns. 

2.3.5 Finger Taps on Physical Surfaces. There has been active re-
search to enable text entry on any physical surfaces around us, 
such as tables. Researchers have proposed the use of wearable In-
ertial Measurement Unit (IMU) devices, such as a ring [25], two 
wristbands [62], or two fve-fnger-straps [76] to decode typing 
sequences during fnger tap typing on an imaginary QWERTY key-
board. An example of such an approach is TypeAnywhere [76], 
which achieved a mean typing speed of 70.6 WPM with a mean er-
ror rate of 1.5% after four days of practice. Although these outcomes 
are remarkable, these methods are mainly suited for word-level 
input due to their reliance on probablistic decoding at that level. 
For example, TapType [62] evaluated typing performance using test 
phrases that include Out-Of-Vocabulary (OOV) words by treating 
each character as a “word”, resulting in a considerable decrease in 
typing speed from 19.2 to 9.0 WPM. 

2.3.6 On-Skin Finger Touch. Researchers have suggested using the 
skin as an always-available typing surface. Typing on the skin with 
bare-hand techniques also allows users to utilize their dexterous 
hand skills in an AR interaction. PalmType used the palm and 
fngers as input space and mapped each key of the QWERTY layout 
on separate segments of the skin [64]. While eyes-free typing with 
an index fnger, PalmType achieved a mean typing speed of 7.7 
WPM. DigiTouch used the skin on one’s fnger for bimanual thumb-
to-fnger touch interaction (i.e., the thumb touched the skin of the 
fngers on the same hand), achieving a mean typing speed of 16.0 
WPM and a mean error rate of ~1% after 180 minutes of practice [66]. 
TipText [70] and BiTipText [69] used conductive flms attached at 
the frst segment of the index fnger to support eyes-free text entry 
(i.e., the thumb tip tapped on the flm). Both techniques were limited 
to entering text only at the word level and did not ofer the capability 
to input characters individually. The unimanual TipText achieved 
a mean typing speed of 13.3 WPM and a mean error rate of ~0.3%, 
whereas the bimanual BiTipText achieved a mean typing speed of 
25 WPM and a mean error rate of ~0.03%. Both of these results were 
after practice with 30 phrases. 

Figure 2: Hand postures during two-handed physical smart-
phone use that were observed during Hoober’s studies (image 
from [30], with permission). 

These techniques drastically difer from conventional typing 
methods, requiring users to learn new interaction paradigms often 
with custom hardware. STAR, on the other hand, ofers a familiar 
typing experience to users by leveraging their physical smartphone 
two-thumb typing skills. Furthermore, STAR supports both word-
level and letter-level input, ofering practicality in real-life typing 
scenarios. 

3 STAR DESIGN PROCESS 
To design a smartphone-analogous typing method, we frst sur-
veyed how users typically hold and type on a physical smartphone. 
According to Palin et al.’s large-scale dataset on mobile text en-
try [47], over 82% of people used two thumbs to type. In addition, 
a public observation on how people hold mobile devices [29] found 
that people “cradled” their mobile phone in their fngers and used 
both thumbs for two-handed input (Figure 2). Within this context, 
we established the following design principles: 1) users should 
hold their hands in a similar manner to how they do while holding 
a mobile phone, 2) the same QWERTY layout should be used, 3) the 
fnger movements used to type should be similar to smartphone 
typing, and 4) there should be a physical surface to type on as if 
typing on the smartphone. 

Following these principles, during our design phase, we consid-
ered cognitive factors, including the intuitiveness of hand posture 
and physical factors, including the typing surface and keyboard 
layout and size. 

3.1 Elicitation Study: Typing Hand Posture 
To explore the appropriate typing skin surface and corresponding 
hand posture for STAR, we conducted an elicitation study to observe 
the hand postures that users naturally used while typing on an 
imaginary smartphone. The elicitation study was run remotely 
through video calls with 29 participants (19 females, 10 males; 
age: M = 38 years, SD = 14 years). Participants were instructed 
to imagine that there was an invisible, imaginary smartphone in 
their hands to type on. Afterward, they were asked to type the 
sentence, "The quick brown fox jumps over the lazy dog" on an 
imaginary smartphone in their hands. We observed hand postures 
from diferent angles. The study took about 15 minutes, including 
the introductory instructions and the completion of a demographic 
survey. All participants were paid. 
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Figure 3: Results of the elicitation study depicting the skin 
surfaces and hand postures that users would use for imagi-
nary smartphone typing. These are (a) Single Palm Surface 
with one hand and tapping with a fnger from the other hand 
(n = 2), (b) Nested Finger Surface with both hands folded and 
tapping with both thumbs (n = 20) and (c) Index Finger Sur-
face with the hands in a symmetric contact and tapping with 
both thumbs (n = 6). One participant used both thumbs while 
separating their hands, which did not ft into any category. 

During the study, 93% of participants (27 out of 29) used both 
thumbs for typing, and 96% of them (26 out of 27) maintained con-
tact between both hands while typing. This observation provided 
evidence that most users perceived typical smartphone typing as 
utilizing both thumbs while keeping the hands in contact. This is 
notable considering that users’ hands may not always make contact 
during the use of a physical smartphone (Figure 2). 

Many participants (n = 20) used the Nested Finger Surface to 
create a thumb tapping space by placing their hands together in a 
folded position, with one hand on top of the other hand (Figure 3b). 
The next most common approach (n = 6) was to utilize the Index 
Finger Surface by making symmetric contact between the hands. In 
summary, the elicitation study revealed three main candidates for 
on-skin smartphone-analogous typing. As this research focuses on 
two-thumb typing, cases involving two thumbs (Figures 3b and 3c) 
were explored further. 

3.2 Prototype Development and Feedback 
During the iterative design of the technique, we focused on im-
proving the accuracy, comfort, and efciency by refning the typing 
surface, keyboard position, and keyboard size. 

3.2.1 Typing Surface. Based on the fndings from the elicitation 
study, we singled out two candidates for on-skin two-thumb typing: 
the Nested Finger Surface and the Index Finger Surface. To exam-
ine the suitability of each typing surface in realizing STAR, we 
developed an initial prototype with a Hololens 2 AR HMD. The pro-
totype utilized the HMD’s vision-based hand tracking technology 
for thumb tracking and tap sensing. In the testing setup, a virtual 
keyboard of smartphone size (Figure 4c, Original) was placed in the 
world space and displayed through the HMD. The participant then 
manually aligned their hand surface with the keyboard. The tracked 
position of the thumb’s tip, which interacts with the keyboard, was 
visualized using a small colored sphere. 

During an informal pilot, we observed that users experienced 
difculty in achieving stable key tapping on the virtual keyboard 
that is overlain on the Nested Finger Surface. This was due to the 
uneven typing surface caused by the depth diference between the 

two hands (i.e., one hand was placed behind the other). Moreover, 
the middle fnger was often positioned slightly behind the index fn-
ger, adding uneven depth distance from each thumb. On the other 
hand, we observed that they were able to make more consistent 
key presses with better stability on the virtual keyboard that is 
overlain on the Index Finger Surface. This could be attributed to 
the fact that the distance from the thumb to the surface was more 
even due to the fat property. Based on the pilot’s feedback, we 
decided to use the Index Finger Surface for on-skin thumb typing. 
Although the Index Finger Surface was not the most popular choice 
from the elicitation study, we were encouraged that multiple partic-
ipants (n = 6) independently suggested this posture as a canonical 
representation of imaginary smartphone typing, which also pro-
moted more symmetric and ergonomic thumb-driven typing than 
the other option. 

3.2.2 Keyboard Positioning. When using a physical smartphone, 
the touchscreen follows a user’s hand position as they are holding 
the device. We tried to mimic this experience by incorporating a 
Hands-Following keyboard (Figure 4b), which updates its position 
and orientation according to the joints’ tracked positions. To com-
pensate for the hand tracking jitter (Figure 5b), a low-pass flter (i.e., 
1-euro flter [9]) was applied, and the axis of rotation was restricted 
for stable alignment between the keyboard plane and the user’s In-
dex Finger Surface. During an informal pilot, however, we observed 
that users had difculty tapping the intended keys as the hand 
tracking jitter was still causing the keyboard to shake. This was 
particularly noticeable when the two thumbs were continuously 
moving to type. Although a strong low-pass flter could alleviate 
this, it would also cause a delay in achieving timely synchroniza-
tion between the virtual keyboard and the user’s hand surface. We 
observed that even a tiny amount of unexpected displacement of 
the keyboard could signifcantly elevate users’ tapping errors, when 
dealing with the small inter-key distances (1-2 mm). Therefore, we 
decided to try a Stationary keyboard by fxing the keyboard at the 
initial position where the knuckle posture was made. With the 
Stationary keyboard, a user can reposition the virtual keyboard by 
making a knuckle posture at a new location. 

During an informal test run, we observed that users were able 
to type more confdently using both thumbs on the Stationary key-
board that is overlaid on the Index Finger Surface, without worrying 
about the keyboard unexpectedly moving out of place. Finally, we 
decided to use the Stationary positioning in our fnal implementa-
tion to simulate a stable keyboard alignment. 

3.2.3 Keyboard Size. Lastly, we tested diferent keyboard layouts of 
varying sizes, starting with the layout of a physical smartphone key-
board (Figure 4c, Original). During an informal assessment where 
users typed phrases they wanted on a Stationary virtual keyboard 
overlain on the Index Finger Surface, we observed that users fre-
quently made tapping errors. This is anticipated, given that the 
keys were 5.5 mm wide with an inter-key distance of 1 mm, and the 
Hololens’ fnger tracking showed a tracking jitter of around ± 1 mm 
(Figure 5b). We then designed larger keyboards that would facilitate 
more confdent thumb tapping while making sure that keys on both 
ends (e.g., q or p) were within an easily reachable distance. Through 
an informal test, we examined various key widths (i.e., 6, 7, 8 mm) 
and inter-key distances (i.e., 2, 3, 4 mm), and decided to use a 6 mm 
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Figure 4: The three design parameters explored during the design phase for STAR: (a) the use of hand surfaces for two-thumb 
typing such as the Index Finger Surface and Nested Finger Surface, (b) diferent Positionings such as Hands-Following and 
Stationary, and (c) diferent Sizes such as Original (i.e., the iPhone XR’s default keyboard layout) and Enlarged. Boldfaced 
options were chosen for the fnal STAR design. 

key width and 2 mm inter-key distance for the Enlarged keyboard 
size (Figure 4c) in our fnal implementation. Although we standard-
ized the keyboard size for the controlled experiment, personalizing 
the keyboard size based on the user’s hand size remains a valuable 
opportunity. 

4 STAR IMPLEMENTATION 
Based on the explored design parameters, we arrived at a set of 
design decisions that optimizes usability and key input accuracy: 
Enlarged size, Index Finger Surface typing surface, and Stationary 
positioning as highlighted in bold texts in Figure 4. In this section, 
we describe the main components of our implementation: 1) hand 
tracking, 2) thumb tap sensing for key registration, 3) visualization 
details, and 4) word suggestion feature. 

In the fnal implementation (Figure 6), a user can invoke STAR 
by making a “knuckle posture” as if holding a smartphone. The 
knuckle posture invokes the virtual keyboard and overlays it on 
the hands. The user can then perform two-thumb typing on the 
sides of the index fngers. Once the text entry is complete, the 
user can exit the typing mode by releasing the knuckle posture to 
seamlessly transition to other tasks. The knuckle posture is expected 
to support quick mode switching while preventing unintended 
activation since the sensory feedback of the hand contact signals 
the mode change [56]. 

Figure 5: The observed (a) tracking latency and (b) tracking 
jitter of the thumb tip position from the Hololens 2 hand 
tracking. The tracking latency was measured while moving 
the hand approximately 200 mm along a single axis, whereas 
the measured position was approximated from the recorded 
video. (i.e., A ruler was put at a fxed position in the recorded 
video, and the tracked thumb was moved in line with the 
ruler.) The tracking jitter was measured for 5 seconds while 
the hand was held stationary on an armrest. 

4.1 Bare-Hand Position Tracking 
We implemented STAR under the hand tracking capabilities of 
the current state-of-the-art AR HMD (i.e., Hololens 2). As mod-
ern AR/VR HMDs on the consumer market (e.g., Hololens 2, Meta 
Quest 2, and HTC Vive) support hand tracking for bare-hand in-
teraction, the tracking fdelity is expected to be more mature over 
time. However, it currently has a noticeable tracking latency of 
~90 ms and a tracking jitter with a range of approximately ±1 mm, 
as shown in Figure 5. The selection of design parameters, such 
as Stationary positioning, was made to simulate more stable hand 
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Figure 6: A typical interaction sequence while using STAR. (a) A user triggers STAR typing by making a knuckle posture. (b) 
The user performs familiar two-thumb typing on their Index Finger Surface with visualized thumbs and projection arcs. (c) 
Finally, the user exits the typing mode by releasing the knuckle posture. (d) The clear view of the projection arc and visualized 
thumb joints. 

tracking under the capabilities of the current state-of-the-art AR 
HMD (i.e., Hololens 2). Thus, there may be a chance to revisit the 
design decisions with a more reliable tracking environment. 

4.2 Thumb Tap Sensing (Key Registration) 
Just like on a physical smartphone, a key tap should be detected 
whenever the thumb touches the Index Finger Surface. We frst 
implemented the detection of key tap (i.e., the contact between a 
thumb and the Index Finger Surface) solely with vision-based hand 
tracking, as shown in Figure 6. However, because the Hololens 
2’s fnger tracking did not have sub-millimeter level precision, the 
key registration and thumb-fnger contact was often temporally 
misaligned. This misalignment of haptic feedback led to errors 
and user complaints. To address this in the study, we developed 
robust thumb tap sensing beyond what the Hololens 2 could sense. 
We used thumb-tip-worn capacitive tapes (Figure 7a) to simulate 
accurate tap detection. Thumb taps register the key with the closest 
center on the virtual keyboard. Given the continued advancement 
in hand tracking technology, we anticipate that fully bare-hand 
thumb tap sensing will achieve comparable performance levels. 
Further discussion on the realization of bare-handed tracking is in 
Section 6.1. 

4.3 Visualization Details 
In see-through (i.e., glasses-based) augmented reality, where virtual 
pixels are overlain on the physical environment, users often confuse 
the “depth” of a virtual object [50]. We also observed that users 
often misjudged the distance between their hands and the virtual 
keyboard, which resulted in improper hand alignment. To alleviate 
the depth perception, we visualized the projection arc from the 
thumb tip to the keyboard plane, and highlighted the hovered key 
at the end of the arc using color feedback (Figure 6d). In addition, 
we visualized all three thumb joints and the connections between 
them above the keyboard, to provide users with a better perception 
of thumb depth. 

During an informal test, we found that users frequently made 
tapping mistakes when only the ThumbTip joint was visualized. 
This was attributed to the thumb position shifting during curved 
tapping movements. For example, users frst located their thumb 
straight above an intended key (e.g., k) and executed a thumb tap, 
resulting in them touching an adjacent key (e.g., j) due to the curved 
trajectory caused by the thumb’s joint fexion (i.e., the human thumb 
tip does not move in a straight line, but rather an arc [71]). After 
visualizing all three thumb joints and the expected projection arcs, 
we observed that users better predicted the key to be selected by 
their curved thumb tapping movements. 

4.4 Word Suggestion Feature 
The completion of a word via predictive suggestion is a common-
place feature within today’s mobile text entry systems. There are 
three common types of suggestions: auto-completion/correction 
when the Space is pressed, suggestions that are tapped before one 
types all the letters in a word, and suggestions that are tapped to 
make a correction after typing all the letters in a word. Although 
widely used, forcing auto-completion/correction on every Space 
could interfere with the evaluation of the technique itself. There-
fore, we included the second feature, which allowed participants to 
use completion by tapping suggested words based on their needs. 
The words with the highest and second highest probability were 
suggested on the left and right buttons, respectively. 

To identify the two most probable words, a statistical decoding 
system combined spatial probability and language model prob-
ability. First, for each touch point on the keyboard, the spatial 
probability of each letter was calculated using a bivariate Gaussian 
Distribution [4] (e.g., t: 0.544, y: 0.432, ..., p: 0.001; the � value was 
the distance between the center of each key). By multiplying the 
spatial probabilities of each touch sample, the probabilities of the 
possible sequence of characters could be calculated (e.g., thw: 0.425, 
the: 0.312, thr: 0.266, ..., pmz: 0.000). The decoder then generated a 
list of words that begin with each candidate sequence of characters 
(as a prefx) in the language corpus, and multiplied the language 
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Figure 7: The testing environments used during the evaluation study. (a) In the STAR typing test, the participant put on the AR 
HMD (Hololens 2) and the thumb-tip-worn capacitive tapes. (b) In the smartphone typing test, the participant held a physical 
smartphone to type. (c) Schematic diagram includes an Arduino board, two 1MΩ resistors, and capacitive tapes for thumbs. 

model probability to calculate the fnal probability of the word. For 
the language corpus, Kaufman’s lexicon [33] was used, with each 
word’s frequency extracted from Wikipedia corpora [41]. 

5 STAR EVALUATION 
We conducted a user study to evaluate STAR’s text entry perfor-
mance. We also included a physical smartphone typing condition 
(Smartphone) to observe the performance gap between STAR and 
Smartphone. As the goal of the study was not to outperform Smart-
phone but to determine how close STAR could approach state-of-the-
art smartphone typing, Smartphone was evaluated before and after 
the study was completed (i.e., it was not a typical within-subject 
factor). As the text entry speeds on the two instances of Smartphone 
typing were not signifcantly diferent (39.9 vs. 39.0 WPM), they 
were averaged to form baseline data. 

5.1 Participants 
Ten participants (i.e., two females, eight males; age: M = 25 years, SD 
= 4 years) were recruited from a university community to participate 
in the study. Two participants wore glasses, two participants were 
left-handed, and eight participants had no prior AR experience. All 
participants were paid. 

5.2 Apparatus 
A Microsoft Hololens 2, with a diagonal feld of view of 52°, was 
used to run the Unity-based STAR application. For thumb tap sens-
ing, real-time capacitance data from the thumb-tip-worn tape was 
sent to a PC from an Arduino board through serial communica-
tion and was then sent to the Hololens 2 device through wireless 
TCP communication (Figure 7c). We used distinct thresholding for 
debouncing the signal. The system identifes the tap engagement 
when the capacitance surpasses 250 (unit returned from Capaci-
tiveSensor library [1]), and it recognizes the completion of the tap 
when it falls below 200 units. For the Smartphone baseline, a Galaxy 
A13 5G smartphone was used. The Smartphone test application was 
developed in Android Studio and used the Original keyboard layout 
(Figure 7b). 

5.3 Procedure 
At the beginning of the study, participants were asked to sit on a 
chair with no armrest. After completing a consent form, participants 
were instructed on how to complete the experiment using a video 
and slides. Participants were asked to roll up their sleeves so they 
would not cover their wrists and face a wall with a plain background 
to allow for stable hand tracking. Participants donned the thumb-
tip-worn capacitive tape before starting the STAR blocks. 

On each trial, participants were asked to transcribe a phrase 
that was randomly generated from the Mackenzie and Soukoref 
phrase set [44]. Phrases that contained words that were not in 
Kaufman’s lexicon [33] were excluded. The set of phrases presented 
was identical for all participants. To transcribe a phrase, participants 
were instructed to make a “knuckle posture” to open the keyboard 
and then tap their “Index Finger Surface” with a thumb to touch 
a key. Similar to many other evaluations of text input techniques 
[19, 47], users could opt to complete a word by tapping on word 
suggestions, consisting of two options in our design (Figure 7). After 
each transcription trial was complete, participants clicked on the 
Submit button. They could then check their text entry speed and 
error rate for that trial. 

Each block in the study contained ten transcription trials. Par-
ticipants completed one block of Smartphone before completing 
the fve STAR blocks, and then a fnal block of Smartphone after 
completing the STAR blocks. Prior to the frst STAR block, partici-
pants were asked to transcribe three sample phrases to familiarize 
themselves with the STAR application. At the beginning of each 
block, a preparation stage allowed participants to touch keys on an 
empty text feld without knowing the target phrase to allow them 
to make minor adjustments to the height/distance of their hands 
to the keyboard if desired. Once a participant was ready to start 
transcribing, they pressed the Show Phrase key (the Submit but-
ton shown in Figure 7a was Show Phrase before starting a trial) to 
get the target phrase. Participants were informed that their typing 
speed would be recorded from the moment they pressed their frst 
letter, so they could memorize the target phrase before starting the 
transcription if desired. 

Participants were instructed to type as quickly and accurately 
as possible. Between each block, participants removed the HMD 



STAR: Smartphone-analogous Typing in Augmented Reality UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA 

Block 1 Block 2 Block 3 Block 4 Block 5 Smartphone 

Text Entry Speed (WPM) 17.4 (3.1) 18.5 (2.6) 19.9 (2.2) 21.8 (2.8) 21.9 (2.8) 39.4 (7.4) 
UER (%) 0.1 (0.2) 0.2 (0.3) 0.3 (0.4) 0.3 (0.7) 0.3 (0.6) 0.5 (0.7) 
CER (%) 7.5 (4.8) 9.2 (6.9) 9.0 (5.6) 7.9 (6.2) 8.8 (4.2) 8.3 (3.4) 
IKI (ms) 805 (203) 697 (154) 676 (175) 617 (128) 585 (100) 315 (72) 

Backspace Usage (count) 3.0 (2.0) 2.9 (2.4) 3.2 (2.3) 2.9 (2.4) 3.0 (1.4) 2.6 (1.2) 
Key Press Duration (ms) 148 (25) 138 (22) 140 (21) 138 (20) 132 (17) 84 (9) 

Table 2: The means and standard deviations of the text entry speeds, uncorrected error rates (UER), corrected error rates (CER), 
inter-key intervals (IKI), backspace usage counts, and key press durations during the user study. The performance of each block 
is reported separately for the STAR condition, and the average of the two blocks is reported for the Smartphone condition. 

Figure 8: Line plots of mean Text Entry Speed, Inter-Key Interval (IKI)s, and Key Press Duration (KPD) from the evaluation 
(error bars show standard deviation). 

and had a break of at least two minutes. In total, the experiment 
took approximately two hours to complete. 

5.4 Metrics and Analysis 
Several metrics were computed to understand the degree to which 
STAR approached state-of-the-art smartphone typing. 

Text entry speed and error rate were computed as they are the 
two main metrics of performance in text entry research. Text entry 
speed was measured in Words Per Minute (WPM), where the efec-
tive word count was calculated based on the number of transcribed 
characters minus one divided by a nominal word length of fve 
[67]. The entry duration was measured from the frst key input to 
the last key input for each phrase. We computed three error rate 
metrics: the Uncorrected Error Rate (UER), the Corrected Error 
Rate (CER), and the number of times the backspace key was pressed 
[59]. The UER counted the errors in the submitted text based on the 
Minimum String Distance [67]. The CER was similar to the UER 
but also counted backspace usage as an error. 

Micro-metrics such as inter-key interval (IKI) [21] and key press 
duration [18] were also collected to obtain an in-depth analysis 
of typing behaviors. Inter-Key Interval (IKI) is the time between 
two subsequent key inputs [21], and can correlate with text entry 
speed. Key Press Duration (KPD) is the time between key down 
and key up events [18]. For STAR, the KPD was measured from the 
moment the thumb touched the Index Finger Surface to the moment 
it was released. For Smartphone, the KPD was measured from the 
fring of the key down event to the key up event as measured by 
the Android API. 

To measure the learning efect over blocks, one-way RM 
ANOVAs were used for metrics with normal distributions (i.e., the 
text entry speed, IKI, and key press duration metrics) and Friedman 
tests were used for metrics without normal distributions (i.e., error 
rate and backspace usage count metrics). For post-hoc comparisons, 
paired sample t-tests with a Bonferroni correction were performed. 

In addition to qualitative metrics, we collected participants’ sub-
jective feedback via the post-interview. In addition to their overall 
experience, we asked their thoughts on the main factors that af-
fected their performance diference between STAR and Smartphone. 

5.5 Results 
We frst describe the quantitative results (Table 2) and then report 
on qualitative feedback from our study participants. 

5.5.1 Text Entry Speed. The RM-ANOVA revealed signifcant dif-
ferences across STAR blocks (F (4,36) = 10.996, p < .001). Post-hoc 
comparisons revealed that Block 1 (17.4 WPM) was signifcantly 
slower than Block 4 (21.8 WPM; p < .05) and 5 (21.9 WPM; p < .001) 
and that Block 2 (18.5 WPM) was signifcantly slower than Block 5 
(p < .005). As the text entry speeds on the two blocks of Smartphone 
typing were not signifcantly diferent (39.9 vs. 39.0 WPM), they 
were averaged to form a baseline (39.4 WPM). By Block 5, partici-
pants were performing at up to 56% of the smartphone typing speed. 
Note that by the last block, the fastest typist reached 25.0 WPM 
with STAR, whereas the slowest typist reached 16.4 WPM. 

5.5.2 Error Rates. The Friedman Test did not fnd any signifcant 
diferences in UER across the fve blocks of STAR. The average 
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UER was 0.2%, whereas, for Smartphone, the average UER was 0.5%. 
These UERs indicated that participants were able to complete the 
transcription task with few errors during both conditions. 

The Friedman Test did not fnd any signifcant diferences in 
CER across the fve blocks of STAR. The average CER was 8.5%, 
whereas, for Smartphone, the average CER was 8.3%. For backspace 
usage, the Friedman Test did not fnd any signifcant diferences 
across the fve blocks of STAR. On average, participants used the 
backspace key 3 times during the STAR condition, and 2.6 times 
during the Smartphone condition. These similar CER and backspace 
usage results indicate that participants exhibited comparable de-
grees of correction behavior while using both STAR and Smartphone 
techniques. 

5.5.3 Inter-Key Interval (IKI). The RM-ANOVA found signifcant 
diferences across blocks for IKI in STAR (F (4,36) = 12.703, p < .001). 
As the mean IKI for Smartphone was 315 milliseconds, by Block 
5, participants’ IKI was 585 milliseconds, which was 54% of their 
smartphone performance and is consistent with the ratio of their 
text entry speed (i.e., 21.9 WPM / 39.4 WPM = 0.56). 

5.5.4 Key Press Duration (KPD). The RM-ANOVA did not reveal 
signifcant diferences across blocks for the time between key 
presses in STAR, with the average KPD across all fve blocks being 
139 milliseconds. As the mean KPD for Smartphone (84 millisec-
onds) was 1.6 times faster than the STAR, participants made 1.6 
times faster key presses on the Smartphone touchscreen than STAR. 
This observation on KPD is important in that it allows us to take a 
deeper look at the low-level factors infuencing the performance 
gap. The discussion on this will be continued in Section 5.6. 

5.5.5 Subjective Feedback. In reference to their experience, some 
participants reported that they enjoyed using STAR. P3, for example, 
mentioned "It was interesting that I am able to type without any on-
hand device like a smartphone" and P6 mentioned "It was overall a 
very new and pleasant experience". P7 also mentioned "It took some 
time to know how to type well, but it worked like smartphone typing 
once I got used to it." 

In response to the main causes of the performance issues with 
the techniques, fve participants mentioned the limited fdelity 
of hand tracking. P6 noted that "the [visualized] thumb couldn’t 
follow my speed when I moved my fnger quickly from one key to 
another ... though it is a slight delay, it makes me keep checking the 
[visualized] thumb position to avoid mistakes". P5 and P6 commented 
on accidentally touched top-row keys (i.e., q, w, ..., p) while trying 
to touch the word suggestion button above them. P5 mentioned 
"When I quickly tap the word suggestion button, my (tracked) thumb 
wasn’t following enough so the keys on the frst row were selected 
instead". 

Three participants wanted to use a version where the keyboard 
followed their hands and automatically aligned. Interestingly, this 
concept of the Hands-Following keyboard was explored during our 
initial design process but was abandoned due to limited hand track-
ing fdelity (Section 3.2.2). P7 mentioned "I had to think not only 
about typing but also about where my hand surface is relative to the 
keyboard. I think it slows down the typing". P7 also suggested using 
one-handed thumb swipe gesture typing, as many people do on 
smartphones today. Lastly, P3 suggested using mid-air gestures to 

trigger key input, e.g., performing a mid-air thumb left swipe for 
backspace. 

5.6 STAR vs. Smartphone: Performance Delta 
STAR was able to achieve text entry speeds that were as high as 56% 
of the users’ physical smartphone typing speed, while maintaining 
similar error rates in terms of UER and CER with 30 minutes of 
training. As a text entry technique that leverages the same two-
thumb typing skill as a physical smartphone, we believe that it 
has the potential to achieve even closer performance. Here, we 
analyze the factors contributing to the performance delta between 
STAR and smartphone typing using both quantitative performance 
metrics and subjective feedback. 

5.6.1 Hand Tracking. The most crucial factor contributing to the 
performance gap was the HMD’s unreliable hand tracking. As iden-
tifed by half of the participants, it was necessary for users to keep 
checking the visualized thumb position to avoid mistakes. This can 
be confrmed again with quantitative metrics. First, the reported 
IKIs indicate that users on average spent 1.9 times longer (585 ms) 
key-to-key input than that of Smartphone (315 ms). Users needed 
to keep monitoring the tracked thumb position to avoid errors, 
which eventually slowed down their key-to-key movement. Second, 
the reported KPDs indicate that users on average spent 1.7 times 
longer (139 ms) unit key press than that of Smartphone (84 ms). 
Although it is presumed that the duration of a general thumb tap 
would not be much diferent either on an Index Finger Surface or 
on a touchscreen, STAR showed considerably longer KPDs. We 
speculate that participants needed to wait for the lagging thumb 
marker to visually verify that the correct key had been pressed. 

5.6.2 Virtual Keyboard Positioning. Another factor infuencing the 
STAR performance is the Stationary positioning, which was dissim-
ilar to how users employ smartphones. As outlined in Section 3.2.2, 
the smartphone touchscreen follows the user’s hand position as 
users are holding it. Users can therefore leverage proprioceptive 
muscle memory when performing two-thumb typing, as each key 
in the keyboard is always at a fxed position relative to the hands. As 
we were unable to replicate this experience via a Hands-Following 
keyboard due to the HMD’s unreliable hand tracking, participants 
had to instead align their hands to the Stationary keyboard while 
typing. P7 expressed concerns about having to pay constant at-
tention to the hand position with respect to the keyboard, thus 
impacting the typing performance. 

We again highlight that the limited hand tracking precision 
of the current state-of-the-art AR HMD was the most signifcant 
factor that restricted the performance of STAR. We believe STAR 
can reach typing performance closer to the smartphone over time 
with the continued advancement in HMD tracking technology. 
Incorporating additional sensing hardware that does not impede 
users’ thumb movement (e.g., rings [3, 10, 40, 75], smartwatches 
[42], or bracelets [16, 54]) may also open an opportunity to realize 
robust hand and fnger tracking for STAR. 

6 LIMITATIONS AND FUTURE WORK 
Our investigation into skill transfer for typing from smartphone to 
AR leads to several acknowledged limitations on our experimental 
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setup due to the sensing technology, as well as opportunities for 
further investigation of the design space. 

6.1 Real-World Deployment 
To make STAR usable in real-world applications, the frst step will 
be to achieve robust hand tracking and thumb tap sensing. This 
may prove difcult using only a HMD since parts of the hand can 
be occluded from the HMD’s perspective. To address this issue, it 
would be benefcial to incorporate sensing hardware that does not 
impede the user’s thumb typing movements (e.g., rings [3, 10, 40, 
75], smartwatches [42], or bracelets [16, 54]). For example, wearing 
a technology like Electroring [35] could immediately solve the 
challenge of thumb contact detection, although it would require 
users to wear rings on both hands. Further investigation of robust 
sensing techniques using cameras [10, 42], IMUs [40], magnetic 
felds [3, 11], EMG [54], sound [75], RF signals [36], and pressure 
[16] may lead to more robust hand and fnger tracking for bare-hand 
text input methods like STAR. 

Another crucial aspect to consider is to understand STAR in-the-
wild. Although STAR was evaluated in a controlled lab study, text 
entry can occur in diverse situations, such as with primary tasks 
(e.g., listening to music or during a conversation), with various 
body poses (e.g., standing, sitting, leaning, or lying), with diferent 
activities (e.g., walking, or resting on a desk), or with dynamic 
real-world background. By evaluating STAR in a more extensive 
range of environments, we will discover additional opportunities 
and guidance for further refnement of the technique. 

6.2 Practical Standalone Prototype vs. 
Simulating the Limits of the Idea 

During our initial prototyping, we faced the trade-of between a 
practical standalone implementation that would show the tech-
nique’s performance with today’s standalone hardware and a proof-
of-experience level prototype, simulating the limits of the technique 
with future technologies. While each approach has its respective 
advantages, we elected a balanced approach. The position sens-
ing is enabled with standalone HMD hardware, while the contact 
detection is enhanced with the capacitive tapes. We believe this 
approach provides slightly higher external validity to our results 
than if we had used high-precision motion tracking equipment (e.g., 
Optitrack) for position sensing. In particular, several unobtrusive 
techniques could be utilized to achieve reliable contact sensing 
[35, 42], whereas replicating motion tracking equipment accuracy 
is still unachievable with onboard HMD hardware. 

However, it is important to note that the performance limits of 
the STAR method under an ideal technology (e.g., simulation with 
a motion capture system) have yet to be investigated. Since this 
aspect was not explored within the scope of this study, it presents 
an intriguing question for future research endeavors. 

6.3 Typing Performance Modeling with 
Tracking Precision 

The hand tracking latency of Hololens 2 was approximately 90 
ms, and a tracking jitter was around ± 1 mm. Within this range 
of tracking performance, the STAR method achieved 56% of the 
physical smartphone typing speed. To further explore the infuence 

of tracking latency and error on STAR’s typing performance [48], 
future research could involve systematically manipulating these 
variables in an experiment and analyzing their specifc impact on 
STAR’s performance. This may reveal the level of tracking precision 
required to reproduce smartphone-level typing performance in 
practice. 

6.4 One-handed STAR 
While our research primarily focused on two-thumb smartphone 
typing, one-handed typing is also prevalent on smartphones [29, 
47]. One-handed typing can involve either gesture swipe typing 
[37, 74] or character-level tap typing. As one-handed tap typing is 
presumably slower, gesture typing may be more suitable for the 
one-handed STAR (i.e., the one-handed gesture typing technique 
on a virtual keyboard overlain on the hand skin surface). Given 
that previous one-handed gesture typing techniques in AR/VR 
[12, 34, 40, 45, 73] have been mostly explored using an indirectly 
mapped cursor visualized on a large keyboard layout through a 
HMD, it could be an attractive direction for future research to 
investigate how to transfer smartphone gesture typing skills to 
on-skin, one-handed AR text entry. 

7 CONCLUSION 
This research presented a novel bare-hand text entry method that 
is analogous to physical smartphone two-thumb typing. Unlike ear-
lier techniques that utilize new metaphors and movement patterns, 
the proposed STAR technique leverages familiar typing behaviors 
by transferring the same thumb-typing skills we use with physi-
cal smartphones to the AR context. The proposed technique was 
implemented with the current state-of-the-art AR HMD, and the 
evaluation study showed that it supported efcient text entry per-
formance (i.e., 21.9 WPM), which was up to 56% of participants’ 
physical smartphone typing speeds. As the tracking technologies 
for HMDs continue their rapid advancement, typing with STAR 
may approach the level of performance seen in smartphone typing. 
This progress will open up a promising opportunity for STAR to 
become the preferred method of ubiquitous AR text entry. 
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