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Abstract—In this paper, we introduce a novel dynamic visual 
analytic tool called the Cohort Relative Aligned Dashboard 
(CoRAD). We present the design components of CoRAD, along 
with alternatives that lead to the final instantiation. We also 
present an evaluation involving expert clinical researchers, 
comparing CoRAD against an existing analytics method. The 
results of the evaluation show CoRAD to be more usable and 
useful for the target user. The relative alignment of physiologic 
data to clinical events were found to be a highlight of the tool. 
Clinical experts also found the interactive selection and filter 
functions to be useful in reducing information overload. 
Moreover, CoRAD was also found to allow clinical researchers to 
generate alternative hypotheses and test them in vivo.

Keywords— dynamic visual analytics; case-controlled; relative 
alignment; temporal data streams; physiologic data streams. 

I. INTRODUCTION 

Case-control studies are among the most used research 
methodologies in clinical research. A case-control study 
involves isolating retrospective data for patients with a 
condition of interest, and comparing those features to a sample 
of individuals without the condition [1], [2]. The goal is to 
explore correlations across relevant clinical variables. In most 
cases, cohorts must be relatively aligned to an epoch. The 
alignment may be a time period when a test result was 
received, such as a blood result confirming or rejecting a 
possible infection. The relative alignment process typically 
involves a large number of manual data cleansing and data 
preparation activities to align clinical data of each patient to a
single and representative scale. Most case-controlled studies 
use clinical data stored in databases and electronic medical 
records. Performing case-controlled studies using physiologic 
data is a challenging task. Physiologic data is often collected at 
a consistent sample frequency, and appear in their raw form, as 
arrays of values. This is in contrast to a limited set of discrete 
clinical variables, such as lab reports, or physical observations. 

This paper introduces a novel dynamic visual analytic tool 
called the Cohort Relative Aligned Dashboard (CoRAD). The 
CoRAD tool represents an instantiation of the dynamic visual 
analytic publisher component of a larger framework called the 

Temporal tri-event parameter based Dynamic Visual Analytic 
(TDVA) framework. The CoRAD dynamic visual analytic tool 
addresses the persistent challenge of enabling case-controlled 
research using relatively-aligned physiologic datasets. CoRAD 
further supports the integration of retrospective algorithm-
generated output, to enhance the analysis workflow. In 
addition, CoRAD allows the user to drill through multiple 
hierarchies of data, from quality of signals, to abstractions and 
ultimately classifications of relevant events.  

To validate the effectiveness of CoRAD in a clinical 
research case study, a preliminary evaluation was conducted at 
Neonatal Intensive Care Unit at The Hospital for Sick 
Children, Toronto. The subsequent sections details related 
works, problem characterization, task analysis, CoRAD design,
evaluation methods and the results of the evaluation. 

II. RELATED WORK

A case-control study involves retrospective analysis that 
separates patients based on the presence of a condition [1].
Case-control studies, among many observational research 
methods, remain an important aspect of clinical research [2].
Differences are studied and hypotheses are generated based on 
the analysis, to motivate deeper investigation and more 
rigorous research. However visualizations that support these 
efforts in physiologic data remain elusive. 

A. Artemis Platform 
Artemis is an online analytic platform that was developed to 
source, analyze, and perform real-time feature detection on 
multiple physiological data streams, for multiple conditions in 
multiple patients [3]. Artemis supports the deployment of real-
time event stream processing algorithms. In this paper, we use 
data generated by an algorithm running in the Artemis platform 
for neonatal sepsis that was executed to detect and classify 
Heart Rate Variability (HRV) scores between 0 and 60, where 
zero signifies no variability and 60 demonstrated that the 
patient’s heart rate varied consistently in the hour. The details 
of the neonatal sepsis algorithm have been previously 
published [4].  Results from the analysis are then sent to a 
database and also available for real-time streaming for 
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visualization. The output are then processed and sent to a
platform that was developed using the TDVA framework.  
That platform produces instantiations called dynamic visual 
analytic marts, such as the CoRAD.  

B. Cohort health visual representations 
In the general space of health-based cohort analytics, some 
recent work has resulted in high fidelity visualizations with a 
time component. TimeSpan [5] provides an interactive 
dashboard for identifying door-to-needle time for stroke 
patients at a large tertiary hospital. LifeLines presents graphical 
summaries of patient journey [6]. The Cohort Comparison 
(CoCo) tool, provides a simple interface for exploring 
statistical correlations across multiple clinical datasets [7]. 
DecisionFlow presents graphical summaries of patients who 
developed heart failure relative to a population [8]. VISITORS 
is a dashboard for analyzing clinical temporal abstractions in 
oncology patients [9]. EventFlow presents a method to simplify 
event sequence information to rapidly identify abnormalities 
[10]. While all of these visualizations introduce cohort analysis 
of patients using clinical information, there is a need for 
research in representing temporal abstractions of physiologic 
data across cohorts, and supporting automated temporal 
relative alignment, while allowing the user to gain contextual 
awareness using low and higher-level summarizations of data.  

C. Visual analytics of temporal data 
Domain specific dynamic visual analytic tools have been 
shown to perform well in communicating anomalies to the end 
user. The VisAlert system [11], for example, provides 
situational awareness for network security analysts. Another 
system in the same domain is LiveRAC [12], which supports 
additional exploratory features such as semantic zoom to 
search through the data set, and allows for side-by-side 
comparisons between different clusters. However, this system 
presents a complicated user interface with potential for visual 
clutter. Director [13] is a visual analytic tool for computer 
network simulations. It provides a heatmap-based timeline 
visualization to identify the health of multiple nodes, along 
with a temporal view of their health deterioration. CloudLines 
[14] introduces an incremental event visual analytic tool using 
kernel density estimation (KDE) to amplify signals from highly 
dense areas and minimize low density areas. The technique is 
applied to online news stream analytics, and multiple time-
series data are used to highlight topic emergence, and when the 
topic is no longer emerging, a visual decay function is applied 
to emphasize more popular topics.

 While most visual displays are temporally aligned to the 
most recent epoch, in this paper we present a novel visual 
analytic tool that uses relative alignment to a real-world 
independent event. Two heatmap timelines are presented in the 
main display to allow clinical researchers the ability to visually 
explore patterns in HRV across multiple patients.  

III. PROBLEM CHARACTERIZATION

Sepsis is a form of hospital acquired infection, and remains a 
serious health problem requiring antibiotic therapy [15].

Currently it is very difficult to detect using non-invasive 
methods, such as by bed-side monitoring. Clinicians rely on 
qualitative observational methods for identifying signs on this 
illness. When sepsis is suspected, blood samples are drawn and 
required to confirm any diagnosis. However, neither method 
has been found to be reliable [16]. There is growing body of 
evidence that shows new pathophysiologic behaviours can be 
identified earlier using physiologic data. One such case 
involves the study of reduced HRV as a potential indicator of 
sepsis [17], [18]. In addition, Flower et al, 2010 [19], present 
results that indicate periodic cycles of heart rate decelerations,
or bradycardias, are common and seen to be clinically 
correlated with sepsis in addition to reduced HRV and they 
propose heart rate characteristics as a means to correlate the 
occurrence of the two together.

McGregor et al., developed an algorithm that produces real-
time HRV scoring for neonatal infants [4]. This scoring can be 
used to identify temporal areas where there is reduced HRV 
that indicates some sign of illness. A dataset containing HRV
information and algorithm-generated classifications of 
bradycardia as part of McGregor’s neonatal spell research are 
available from a prior study [20].  Data from a total of 47 
patients are available, of which 33 patients have sufficient data 
quality. The goal of this study is to investigate the hypothesis
exposed in Flower et al. [19] that periodic cycles of heart rate 
decelerations together with reduced HRV are common and 
clinically correlated with neonatal sepsis. This information is 
presented in CoRAD and we performed an evaluation to test 
participants’ ability to determine sepsis based on Flower’s 
hypothesis. The study was approved by the Research Ethics 
Boards at The Hospital for Sick Children and at UOIT.

IV. TASK ANALYSIS

Two domain experts were asked to describe specific tasks they 
perform to conduct hypothesis testing using physiologic data 
across a cohort of patients. The common tasks were: 

T1 Relatively align temporal abstractions: Relevant HRV 
values are filtered and manually aligned to an anchor 
point. The relative alignment performed manually, can 
introduces errors, and can be time consuming. 

T2 Import abstractions to a spreadsheet: Each HRV value 
is then sorted by the relative aligned time and imported to 
a spreadsheet manually, this also introduces scope for 
potential error. 

T3 Graph abstractions: Once the HRV values were 
imported into the spreadsheet, line charts and stacked bar 
graphs were frequently used to visualize the data. 

T4 Identify correlations: The domain expert would find 
associations by comparing HRVs before and after the 
anchor point. Further, the domain expert might highlight 
multiple patients of interest and investigate patterns 
between the selections. 
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These tasks were performed manually, and was stated to be 
time-consuming and error prone. These tasks informed the 
design of CoRAD and serve as a guide for future research in 
similar application domains.  

V. DESIGN OF CORAD 
We describe CoRAD with its design goals that were informed 
form the observations and task analysis with domain experts. 

DG1 Integrate heterogeneous data: The first task, the 
relative alignment of physiologic data to clinical data, 
can involve a mix of numeric, continuous, or ordinal 

data types. Our design goal is to unify the representation 
of these data types for extendibility of CoRAD. 

DG2 Single holistic view: Currently most of the current tasks 
performed are manual, however, the ultimate goal is to 
collect all important disparate data into a single 
environment. Patient clinical data is closely associated 
with the patient’s physiology, which is correlated to the 
device measuring that data. Therefore the goal is to 
provide an integrated view of all direct and indirect 
patient data. 

DG3 Details on demand: The user requires access to details, 
however current tasks limit the degree of data that can 

Figure 1: CoRAD provides interactive focus supporting analysis related to events relatively aligned at the zero hour 
(0h) mark. (a) In this figure all patients are aligned to the y-axis, and the relative-time is marked across the top horizontal 
position. All patients are coloured using a red scale (lighter means reduced HRV, darker means more variable heart rate),
unless the ‘Show Positive’ control is active. The normalization of all results were used to produce the population map 
coloured in blue. The detailed view on the bottom (b) provides a line-chart view of details including the raw-data, 
temporal abstraction, or high-level classifications. A multi-coloured histogram is also available and highlights the 
distribution of HRVs over the entire duration. Each colour is mapped to a patient and the map appears above the selection 
box in the right. The blue histogram represents an average of the population. (c) Provides a view of the properties control, 
functions are provided to manipulate the dashboard view interactively.

a

b

c

519



be accessed in a timely manner. Moreover, access to 
details can be useful in determining the salience of an 
observation. Our goal is to provide the user convenient 
access to details on demand. 

DG4 Access to statistical tools: Many of the activities 
performed are by nature, statistical. So our goal is to 
provide the user with a simple statistical view of the 
data to assist potential discovery of salient features. 

CoRAD is illustrated in Figure 1, and consists of four 
components, including: the main view (Figure 1a), detail view 
(Figure 1b), properties view (Figure 1c), and the context bar 
(Figure 2). The interface was developed using D3 [21]. In this 
section each component is described in detail. 

A. Main View 
The main view, illustrated in Figure 1a, consists of several 
patient bars that utilize an opacity-controlled colour scale to
present HRV information to the user. The darker bars reflect 
higher HRV and the lighter shades denote lower scores. Each 
patient bar is painted from left to right, where the left most 
region shows -120 hours relative to the point of interest which 
in this case was the suspicion of late onset neonatal sepsis. This 
represents about five days prior to the aligned pivot, the zeroth 
hour. The right-most side of the heatmap shows information 
for 48 hours after the aligned pivot. The zeroth hour is marked 
by a grid line that extends from the top of the main view and 
repeat every 20 hours. This method of relative alignment, in 
addition to the context bar support tasks T1 – T3 and DG1 and 
DG2. Each patient is stacked from bottom up, with the bottom 
being the population bar. This vertical arrangement provides a 
convenient means of comparing HRV patterns within their 
respective relatively aligned epoch. An anonymized patient 
identification is appended to the left vertical axis. 

B. Detail View 
The detail view provides an alternative view for selected data 
from either of the other two views. It consists of a line graph 
and a histogram. The line graph is a plot of HRV values for an 
interval selection in the main view. A line graph was 
previously used to display HRV values [22]. If there are no 
selections in the main view, the line graph displays HRV 
values for the entire duration. The user is also able to display 
the line plot of the average HRV of the population. Having 
access to this raw data can be helpful in associating discrete 
values to observations. The line graph supports DG2. For 
instance, Figure 1b, shows the HRV line graph for patient 
N41492_3 and the population pinned to the same canvas, while 
all other lines are set to be transparent. The line graph can be 
configured to show interpolation, should missing data be 
present in the dataset. The default option is to avoid 
interpolation, and make the line transparent when there are 
missing data. 

 The detail view also contains a histogram that displays the 
distribution of HRV values for each selection in the main view. 
The distribution is a Gaussian plot derived from the mean, and 
standard deviation of the HRV data for each sample. Should 
the user select the population, a population mean and standard 
deviations of HRV’s are used based on the values of all 33 

patients in the dataset. The availability of the histogram fulfills 
DG4.The detail view can be altered to higher-level 
classifications, such as the temporal presence of bradycardia. 
This view also exposes details about the HRV value and the 
associated patient when the user selects a single line on the 
screen. The detail view more specifically supports T4, as it 
allows the user to directly compare two or more patients within 
a window of time. The interactive details tooltip allows 
CoRAD to provide the domain expert details on demand, thus 
supporting DG3. 

C. Properties View 
The particular methods by which information is presented in 
the main and detail views are controlled by the properties view 
presented in Figure 1c. The first checkbox allows the user to 
highlight patients that were tested positive, and alternatively to 
disable the highlighting should the user not want to make 
positive cases visible. The subsequent selection buttons are 
grouped according to the views they manipulate. The ‘show 
data quality’ and ‘show bradycardia’ buttons in the context bar 
group control the data being represented in the context bar 
view. The raw data, abstraction and classification selection 
buttons controls the information visible in the detail view. This 
view, which can enhance the ability of the domain expert to 
extract details on demand, supports DG3. 

(a)

(b)

Figure 2: The Context Bar View adds small bars below the 
main HRV data, with two modes: (a) shows the data quality
illustrated using grey fills, the darker fill represents times when 
the data quality was compromised, and (b) representing 
bradycardia events illustrated using blue fills, darker regions 
represent increased number of bradycardia.
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D. Context Bar View 
The context bar resides immediately beneath the patient bar 
and can represent one of two types of information, including 
data quality and the presence of bradycardia. The data quality 
display highlights regions of poor data quality, using a darker 
shade. That encoding is useful in alerting the user that the red 

scale shading of the HRV value is not reflective of the entire 
hour. This is particularly important as patients are often 
disconnected from sensors. Identifying data quality issues was 
an important, but cumbersome task of the analysis process. The 
context bar is designed to reduce the burden by integrating that 
information within the main view.  Figure 2a, shows the 
context bar illustrating regions of poor data quality. For 
instance, patient N43738_1 is shown to have compromised 
data quality just before the 20th hour and continues until the 
48th hour. Meanwhile, N43941_2 is shown to have 
comparatively better quality throughout the entire duration. 
The second type of data the context bar can represent is 
bradycardia data. Figure 2b, illustrates the presence of 
bradycardia episodes during an hour by affixing a blue box 
under the appropriate relative time period. To determine the 
current data represented by the context bar, the user can refer to 
the properties view to identify the selected option. The user can 
interactively control the data represented in this layer, hence, 
providing information on demand. 

E. Design Alternatives 
Prior to finalizing the visual components of CoRAD, several 
alternatives were investigated. Among the most prominent 
alternatives was a radial graph that consisted of two views: a 
distribution and temporal view. The distribution view 
illustrated in Figure 3a, consists of a central arc that describes 
the average distribution of HRV scores for the population, with 
each ring representing a separate patient. The arc begins as 
zero at the top of the ring and extends to the 60th mark. Zero 
represents no variability, while 60 represents variability in each 
minute of the hour. For the distribution illustrated in Figure 3a 
four patients are compared to the average of the population. 
The average of the population has a mean around the 21 mark. 
However for the patients the first and third ring, a mean for the 
distribution is observed around 36 mark. Significantly, these 
patients have had a higher than average HRV scoring recorded 
during the monitored period.  

 A temporal radial graph was also constructed to support the 
identification of abnormal trajectories of HRV values in 
copulations using an average of the population as a baseline. 
The temporal radial graph illustrated in Figure 3b presents 
seven patients who are aligned to population average as 
separated rings at fixed radii from the centre. Opacity is 
controlled to show regions of higher and lower HRV values. 
For instance, the first and third patient from the population are 
seen to have very dark blue rings, signifying higher HRV 
scores. While the patients in the outer ring have lighter blue 
rings, signifying reduced HRV. While there has been many 
forms of radial graphs produced [23], there have been some 
concerns that have emerged about the interpretation of radial 
graphs [24], [25]. However, other instances of radial graphs 
were shown to be successful in identifying trends [26]. The 
radial visual representations were evaluated in a preliminary 
study involving two clinical researchers. Both displays 
required extensive training time to understand, and, the 
temporal radial graph presented a challenge when interpreting 
the tail-ends of the monitoring duration. Evaluators had a 
difficult time observing patterns only in the -120th hour 
without being influenced by the +48th hour that was within its 
immediate vicinity.

(a)

(b)

Figure 3:  Alternative designs for a cohort-based 
relatively aligned dashboard. (a) A radial graph representing 
the distribution of HRV scores over 120 hours for each 
patient. (b) A radial graph representing the temporal 
trajectory of HRV scores for patients. A red mark is 
annotated to determine the zeroth hour, as well as the 48th

hour.
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For these reasons the radial graphs were not selected for the 
full evaluation. While these challenges show that radial graphs 
may involve more training, more research needs to be done to 
further enhance the visual representation to address those 
shortcomings. In future work, both radial graphs will be 
evaluated using similar multidimensional datasets. 

VI. EXPERT EVALUATION

To determine the usability and usefulness of CoRAD, we 
conducted an expert evaluation. Two key quantitative values 
that were measured were accuracy of the verbal statements and 
task completion. 

A. Methodology 
The evaluation of CoRAD was conducted with five experts 
including, clinicians and clinical researchers. A single factor, 
technique, was varied, with two levels: CoRAD (Figure 1), and 
stacked bar display (Figure 4). The stacked bar representation 
is inspired from an alternate design used in the neonatal spells 
research, however this research involves only the bradycardia 
episodes [27]. Seven key measures were collected including, 
demographic information, completion rate, accuracy of 
response, usability problems verbalized, errors made during the 
evaluation, posture, and the subjective satisfaction.  

The experimental task was to determine and verbalize 
suspicion of infection for a single patient (a row in CoRAD, a 
bar in stacked bars). When the participant began the new task 
they were asked to state “I’m moving to the next patient”, this 
statement served to mark the end of the former task and the 
start of a new task. Following exposure to a technique, they 
were asked to provide feedback on the usability and 
acceptability of the user interface. The participants were 
directed to provide their honest opinion of the presented 
display and to participate in a post-session subjective 
questionnaire involving a 5 point Likert scale. All verbal 
discussions, as well as the cursor movements were recorded 
and transcribed.

Participants received an overview of CoRAD and the 
stacked bar graph at the start of the experiment, along with the 
test procedure, and equipment. There was one training scenario 
consisting of 10 patient datasets. Training consisted of the 
experimenter reading aloud interpretations of three patient 
datasets, taking 5 – 10 minutes. Then the participant was 
provided time to explore the interface and familiarize 
themselves with the functionality. The 10 patients used in the 
training set were not included in the evaluation set.  

Each evaluation scenario consisted of 10 tasks. Two 
evaluation scenarios were carried out for each technique, and 
repeated for the other technique (data order was randomized). 
Due to data availability, the same datasets (in random order) 
were used for the training tasks in both techniques across all 

participants. The ordering of technique was counterbalanced to 
limit learning effects. In summary, from the original 33 
datasets, 10 were used for training, and of the remaining 23, 20 
were randomly selected and used in evaluation scenarios.  

Expert participants were recruited via email. Five 
experienced staff physicians were selected from a pool of nine 
qualified personnel. The sample was chosen purposefully to 
represent the local demographics with respect to age, sex, years 
of experience, and involvement in physiologic research. 
Trainees and fellows were excluded from this study. There 
were a total of 5 (participants) x 2 (evaluation scenarios) x 2 
(techniques) x 10 (datasets) = 200 evaluation tasks. Study 
sessions lasted an average of 45 minutes.  

B. Procedure 
A laptop computer with Web site/Web application and 
supporting software was used in a typical office environment. 
The participant’s completion of the task was video recorded for 
aiding transcription and analysis of time to completion. The 
evaluation was initiated with a brief description of the CoRAD 
application, and the participant was made aware that the 
facilitator would be evaluating the application, rather than the 
diagnostic abilities of the participant. Participants were then 
prompted to sign an informed consent sheet that acknowledges: 
the participation is voluntary, that participation can cease at 
any time, and that the session will be videotaped but their 
privacy of identification will be safeguarded.  

Figure 4: Stacked bar representation used to stack all 
patients above a population average (bottom). The zeroth 
mark represents the point of suspicion of infection, and 
negative numbers illustrate HRV scores in each preceding 
hours, while positive numbers signify HRV scores in the 
hours after the event A bar below the x-axis represents
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 The participant was then asked to complete a demographic 
and background questionnaire. Once the demographic 
questionnaire was completed, the participant was introduced 
to one of the two techniques. In both the training and 
experiment phases, the participant was frequently asked to 
think aloud, describing their analysis process. The participant 
body posture was observed and entries were made to the 
observation diary. After each the second exposure to each 
technique, the participant was asked to complete the post-task 
questionnaire and elaborate on the task session with the 
facilitator. After all evaluation scenarios were attempted, the 
participant completed the post-test satisfaction questionnaire. 

C. Analysis 
Each session was video recorded and transcribed (with 

field notes). Analysis was ongoing throughout the fieldwork 
to allow emergent themes to be included into the data 
collection process. The associated themes and distinctions 
formed the basis of the coding strategy. Review of the 
evolving themes contributed to the data synthesis and 
interpretation. To analyse the accuracy of detection the
sensitivity-specificity binary classification method was used. 
This method is a popular clinical measure for determining the 
efficacy of an intervention [28]. Average timing was manually 
determined from the video recording and rounded to the 
nearest second. 

VII. RESULTS

The study yielded data from a total of 200 tasks performed 
across both conditions (10 datasets × 4 evaluation scenarios ×
5 participants). This section highlights the main differences in 
demographics, accuracy of detection of sepsis, task 
completion, and subjective feedback received from expert 
participants. 

A. Demographic Differences 
Five clinical researcher participants were recruited in the 
study and all participants completed each component to 
completion. All participants had at least ten years of practice 
in critical care medicine. Two females and three males were 
recruited. The average age of the sample was 40 – 50 years of 
age. The average length of total clinical experience was 18 
years. All but one subject reported using the computer 
multiple times a day for analysis purposes. All participants 
had at least 15 years of experience working with physiologic 
data. The average reported score of participants’ familiarity 
with physiologic data was 4 out of 5, where 1 represented 
minimal familiarity and 5 represented expert proficiency. On 
the same scale, participants reported their familiarity with 
HRV as 2.5 out of 5 and knowledge of neonatal sepsis as 3.5 
out of 5. Two of the five participants were aware of the 
hypothesis exploring the link between HRV and neonatal 
sepsis. The years of experience also did statistically differ in 
the clinical researcher’s familiarity with the relationship 
between HRV and neonatal sepsis. 

B. Accuracy of Detection 
Table 1 summarizes the results of the display condition, true 
positive, true negative, false positive, false negative, and 

TABLE I. SENSITIVITY AND SPECIFICTY OF BOTH CONDITIONS

Participant

C
ondition

T
rue 

Positive

T
rue 

N
egative

False 
Positive

False 
N

egative

Sensitivity

Specificity

1 CoRAD 2 9 4 5 29% 69%

1 Stacked 3 7 6 4 43% 54%

2 CoRAD 2 11 3 4 33% 79%

2 Stacked 0 15 1 4 0% 94%

3 CoRAD 1 13 4 2 33% 76%

3 Stacked 0 13 3 4 0% 81%

4 CoRAD 0 12 5 3 0% 71%

4 Stacked 2 12 2 4 33% 86%

5 CoRAD 2 13 3 2 50% 81%

5 Stacked 1 9 6 4 20% 60%

Average CoRAD - - - - 29% 75%

Average Stacked - - - - 19% 75%

TABLE II. TASK COMPLETION MEASURES FOR BOTH CONDITIONS

Participant

C
ondition

Successfully 
C

om
pleted

E
rrors

A
verage Tim

e 
(seconds)

Standard 
D

eviation 
(seconds)

1 CoRAD 20 3 25 12

1 Stacked 16 0 23 16

2 CoRAD 20 1 9 11

2 Stacked 17 0 5 5

3 CoRAD 20 0 20 7

3 Stacked 19 0 17 6

4 CoRAD 20 0 16 17

4 Stacked 20 0 15 15

5 CoRAD 20 1 15 8

5 Stacked 18 0 27 19

Average CoRAD 20 1 17 11

Average Stacked 18 0 18 12
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sensitivity and specificity for all tasks performed. True positive 
refers to the number of true sepsis patients that were correctly 
identified to be septic. True negative to the correct 
identification of negative cases as non-septic. False positive 
refers to the number of patients who were incorrectly identified 
as positive, and false negative the number of patients who were 
incorrectly identified as negative. The sensitivity and 
specificity scores were collected for each condition and an 
average specificity and sensitivity score was generated. 

C. Task Completion 
Table 2 summarizes results of the tasks successfully 
completed, errors, average time in seconds, as well as the 
standard deviation in seconds. Non-crucial errors occurred in 
the CoRAD condition that did not obstruct task completion. 
The error was a result of using an external monitor that did not 
reproduce colour saturations, hence the normal distribution 
histograms were less visible. This error was fixed after the first 
pilot trial by reverting to the laptop monitor. 

D. Subjective Feedback 
Clinical researchers provided rich subject feedback about the 
usefulness and utility of both conditions. On the stacked bar 
representations, clinical researchers noted that as they 
progressed through each it became progressively difficult to 
analyse the patient’s HRV scoring due to the non-aligned 
vertical height. The stacked representation was seen to lack the 
ability to allow the expert to compare a certain temporal range 
against the rest of the data set. Clinical researchers also noted 
that using the stacked bar representation required manual 
scrolling to get a perception of the entire duration of the 
dataset. The lack of contextual information was noted to be a 
significant negative of the stacked bar display. 

CoRAD was perceptually simpler and easier for the experts 
to use. The heatmap representation was unanimously noted as 
being very helpful for analysis. All clinical researchers 
appreciated having a single view of the dataset. One of the 
clinical researchers expressed having been confused with the 
red colour coding, they identified the darker red regions as 
being more severe. Interactive zooming was heavily used and 
noted as a positive component. While many experts found the 
detail view important to their analysis, two experts voiced 
having options to have the normal distribution appearing as a 
histogram on a separate display.  

The contextual bar was heavily utilized, however three of 
the five clinical researchers requested to see both bradycardia 
and data quality at the same time. One clinical researcher found 
the CoRAD display too cluttered and overwhelming, however 
that clinician did not use any of the interactive selection and 
filtering functions. Moreover, that clinical researcher preferred 
to see a summary graph showing only the most deviant patient. 
Other clinicians reported high satisfaction with the availability 
of the interactive selection and filter functions, and stated it 
helped to reduce excess information. When interactive 
selections were used, most clinical researchers also used the 
filter to display key patients of interest in the detail view. A 
typical workflow is illustrated in Figure 5, where two patients 
of interest are compared to the population mean in the detail 
view. In the main view, the user has highlighted an interval of 

interest. All clinical researchers stated the highlight function to 
be useful for determining changes in HRV across multiple 
patients at the same time, within salient temporal windows. 
One clinical researcher started the analysis by immediately 
highlighting a temporal window, and maintained that same 
window throughout the entire duration of the analysis. That 
researcher stated that they did not view data in other durations 
to be relevant. 

One clinical researcher stated a desire to see distributions
over only a fixed temporal range. That clinical researcher 
found the display of the average distribution across the entire 
duration not significantly helpful for completing their task.
Researchers used the detail view to confirm their visual 
suspicions, one subject verbalized: “I am not sure (whether I 
am correct) visually about these subsets of patients, I want to 
see them statistically using the detail view. Ah, I see that my 
visual interpretations were correct”.  

After both conditions were tested, clinical researchers were 
asked to state their preference for one display. All experts 
preferred CoRAD over the stacked bar display. All clinical 
researchers stated they would utilize CoRAD as one of the 
applications in their analytic toolkit. Three clinical researchers 
with significant bed-side research interests expressed an 
inclination to use CoRAD as a tool as part of their bed-side 
rounds. One clinical researcher mentioned that after some 
suggested modifications, such as including a dynamic 
histogram for the normal distribution, they would see 
themselves actively using CoRAD.

VIII.DISCUSSION AND FUTURE WORK

An expert evaluation consisting of five domain experts 
analyzing HRV and bradycardia events was conducted in an 
attempt to predict the infant’s neonatal sepsis status. Results 
from the expert evaluation revealed several key insights. The 
demographic differences in this study reveal broad coverage in 
age, sex, and years of experience. Based on the results that 
were observed, there seems to be little differences between age, 
gender, and years of experience to both the accuracy and task 
completion (p > 0.05). The relative low score attributed to 
familiarity of HRV is significant as this measure has yet to be 
established as a routine clinical indicator in practice [29]. One 
clinical researcher mentioned that, while she did not use HRV 
actively, she had knowledge of its potential relevance. 

Accuracy of sepsis detection was reported with sensitivity 
appearing below 50% for both conditions (Table 1). CoRAD 
allowed for a 10% increase in sensitivity, however. With 
respect to the specificity, both the stacked bar and CoRAD 
displays indicate an identical score at 75%. The low sensitivity 
score across both displays may support the notion of a weak 
link between HRV, bradycardia and neonatal sepsis, thereby 
providing counter evidence against the initial hypothesis for 
the dataset used by this evaluation [19], [17], [18]. Since the 
commencement of this research another independent study has 
also reported low accuracy results for the detection of late 
onset neonatal sepsis using these two physiological behaviours 
as part of the heart rate characteristics approach in a three year 
observational  study [30]. Task completion (Table 2) was 
significantly higher on CoRAD than on the stacked bar display 
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(p < 0.05). All instances of unsuccessful task completion 
occurred when these clinical researchers failed to analyse one 
of the required patients in the display. The omitted tasks were 
not subsequently identified by the clinical researcher in most 
cases (8 out of 10), in one instance the researcher spoke aloud 
to confirm whether they may have missed a patient in their 
analysis. Most of the omitted tasks appear as patients stacked 
in the middle or upper region of the representation. 

 Non-crucial errors were seen early in the evaluation with 
CoRAD, in particular with colour accuracy with the external 
display used in a single experiment. The CoRAD display was 
subsequently shown on another display which produced 
accurate colour representation. An additional errors were 
encountered with subject 3 and 7 where the database 
communication was temporarily timed-out. A refresh of the 
web page allowed the evaluation to continue. The average time 
for task completion was not statistically significant between the 
two conditions (17 vs 18 seconds). Even with the additional 

number of interactive manipulations that were performed by 
clinical researchers, CoRAD still allowed the user to perform 
their task in the same amount of time. General interest in the 
tool did not contribute to longer task completion times.  

The general subjective feedback shows greater interest in 
the CoRAD display. A unanimous agreement was present on 
the integration of CoRAD as an informatics tool that should be 
deployed as a tool in the hospital analytics suite. In particular, 
clinical researchers found having the ability to interactively 
select, filter, and expose details on demand to be helpful to 
their analysis workflow. Some researchers report using the 
tool, however with other forms of data, such as 
electroencephalogram, or an oxygen saturation dataset. The 
clinical researchers also suggested two major areas for future 
work. Including having the option to manually change the 
colour scheme, allow the context bar to represent both data 
quality and bradycardia at the same time, and separate the 
histogram view from the details graph. Future work with 

Figure 5: Interactive selection and filtering functions on the CoRAD tool allow clinical researchers to isolate patients of 
interest. In this figure, the ‘Show Positives’ function is selected, which filters patients based on a positive clinical result
for neonatal sepsis. The clinical researcher is shown here highlighting -40 hour to +10 hour two positive cases N44412_1 
and N41492_3 in the detail view.
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CoRAD will address the identified limitations. This study 
presents early results from a user study of five experts at a 
single site. Future work will expand then number of 
participants and include additional sites in the evaluation.  

IX. CONCLUSION

CoRAD has shown positive effects in supporting clinical 
researchers explore patterns across multiple modes of 
physiologic data using an interactive cohort based visual 
analytic tool. The CoRAD display was tested in the context of 
an application by conducting an expert evaluation and 
experimentation against a control stacked bar display. 
Exposure to CoRAD within this limited case study, resulted in 
interest on the part of the clinical researchers to use this tool in 
other scenarios, such as electrocardiography and oxygen 
saturation variability. The relatively aligned heatmap allowed 
each researcher to rapidly identify event details, which was 
more difficult on the control display. However, open 
challenges remain in studying alternative visualizations that 
can be used to display multiple features, such as data quality, 
and bradycardia without producing visual clutter. 
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