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Abstract
In this work, we introduce a novel visualization technique, the Temporal Intensity Map, which visually integrates data values
over time to reveal the frequency, duration, and timing of significant features in streaming data. We combine the Temporal
Intensity Map with several coordinated visualizations of detected events in data streams to create PhysioEx, a visual dashboard
for multiple heterogeneous data streams. We have applied PhysioEx in a design study in the field of neonatal medicine, to
support clinical researchers exploring physiologic data streams. We evaluated our method through consultations with domain
experts. Results show that our tool provides deep insight capabilities, supports hypothesis generation, and can be well integrated
into the workflow of clinical researchers.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces J.3 [Life and Medical Sciences]: Medical information systems—

1. Introduction

Identifying patterns in multidimensional streaming data is a chal-
lenging and common problem across many domains, from intel-
ligence analysis to market research. It is also true in the neonatal
intensive care unit (NICU), where clinical researchers need to iden-
tify complex patterns in a single patient that extend across multiple
high frequency physiologic data streams. N-of-1, also known as the
subject-of-one methodology is used by researchers to perform in-
depth, multi-faceted analysis of real-world observations [LPD∗11].
This method of analysis often results in the early generation of a
hypotheses that can be more formally tested. However prior to that
formal test, clinical researchers must perform an in-depth study of
cases, to extract salient features that support an early hypothesis. In
this paper we introduce a visual representation for in-depth analysis
of multi-dimensional temporal data streams.

Physiologic streams represent a subset of complex data streams,
because they change frequently over time as infants grow and ma-
ture, and new normal ranges and values are established week-by-
week. Clinical researchers elicit knowledge from those multidi-
mensional physiologic streams by isolating features and analysing
behaviours that may predict the onset of clinical conditions. Con-
ducting an analysis is a complex undertaking and currently requires
significant manual siphoning of raw physiologic traces and other
relevant clinical information. To address some of these challenges,
we have developed a novel visualization technique, the Temporal
Intensity Map, which reveals critical information about the fre-
quency, duration and trajectory of streaming events generated by
real-time event stream algorithms. A novel event-stream algorithm

was developed by Thommandram and colleagues [TPE∗13] that
produces event features and classifications in real-time. The visu-
alizations utilize these output to highlight salient temporal features
that may assist the user in generating hypotheses about physiologic
behaviour. We also contribute a unique representation of the bub-
ble chart, named the Sequence Graph for identifying high level pe-
riodic patterns. Finally, we present methods of highlighting three
salient temporal properties called the temporal tri-event parameters
that include frequency, duration, and trajectory.

The Temporal Intensity Map contains three features, first, a non-
linear binning method, represented on the vertical axis, that is based
on both density estimation and logarithmic clustering to discretise
the non-parametric distribution. Second, a time axis to isolate re-
gions of temporal interest. Finally, we employ alpha blending and
hue to control for severity and frequency of an event. The final fea-
ture rapidly conveys information about trending effects, such as the
total percentage away from baseline, or duration of a critical event.
We combine the Temporal Intensity Map with several other coor-
dinated visualizations to create PhysioEx, illustrated in Figure 1,
as a collection of multi-dimensional temporal representations that
supports interactive coordinated brushing, zooming, filtering, and
selecting high-level events to expose raw data. Currently there is
no platform to support researchers studying behaviours in neonatal
spells leading up to critical clinical conditions, such as infection.

In a preliminary study of domain experts using PhysioEx, partic-
ipants detected correlations between low-level event features and
high-level event classifications, identified salient features in the
physiologic data streams that illustrate the infant’s cardiorespira-
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tory health, and deliberated over the presence of infection by care-
fully studying physiological trends. These findings are valuable in
the face of a current lack of tools available to perform deep insight
analysis of physiological data. The research contributions of this
paper are as follows:

• The Temporal Intensity Map (TIM) visualization technique for
frequency, duration and trajectory of events.

• The PhysioEx dashboard of coordinated views including TIMs,
sequence graph, linear graph, and streams graph.

• A case study of PhysioEx with NICU clinical researchers.

In the remainder of this paper we will provide background of the
specific problem domain, followed by related work, design require-
ments, design of PhysioEx, preliminary user study, discussions and
ending with conclusion.

2. Problem Characterization

About 10% of the world’s babies are born premature [BCO∗12].
In the developed world, premature babies are usually admitted to
the NICU. Babies within the NICU have continuous monitoring
of their heart rate, breathing, and SpO2 levels to detect any ab-
normal shifts. Neonatal sepsis, a form of nosocomial infection,
is a life threatening condition that is difficult to detect and for
which early detection significantly improves mortality [Fai13]. Ap-
noea is condition that is defined as a pause in breathing for 20
seconds or more [MMC86]. The term neonatal spells is com-
monly used in NICUs for cardiorespiratory events that may in-
clude pauses in breathing, fall in heart rate, or fall in blood oxy-
gen saturation [TPE∗13]. An increase in frequency of spells may
be associated with neonatal sepsis. A research study by Moor-
man et al. [MDF∗11] reported a potential association between re-
duced heart rate variability and increased bradycardia in the hours
prior to the clinical suspicion of neonatal sepsis. Other studies
have also linked the presence of sepsis with heart rate charac-
teristics, especially reduced heart rate variability and bradycar-
dia [FMLD10, GOB∗03].

Premature infants experience a reduction in the amount of red
blood cells shortly after birth, and frequent blood draws only exas-
perates this condition resulting in potentially severe clinical symp-
toms for the newborn [Ket12]. This condition is more pronounced
in smaller and very premature infants. Therefore clinicians seek to
minimize the number of blood draws taken from the infant for lab-
oratory tests unless it is required.

We present PhysioEx as a tool enabling the end-user to explore
neonatal spells event classifications produced by the real-time data
stream algorithm around the time of suspicion of neonatal sepsis.
By exposing novel neonatal spells event classification information,
juxtaposed with the relatively aligned time of suspicion of neonatal
sepsis, we provide clinical researchers with an expressive tool to
support their analysis and hypothesis generation.

3. Related Work

A number of prior works have produced novel techniques for rep-
resenting temporal big data, relying on techniques such as visual-
izing progressive analytics [GZA06, FMK12], hierarchical cluster-
ing [EF10], alpha blending [KBK11], and applying animations to

compact visual objects [LJH13]. Over-plotting effects of time se-
ries data are a common problem and hence novel methods have
been developed to reveal patterns [AMM∗08]. GScope [TMK03]
uses heatmaps to display biological microarray data, a domain
which sees frequent use of this visualization method. Those
heatmaps were generated using a hierarchical clustering method
that highlights up-regulated or down-regulated genes. Temporal
streams have also been visualized through linear or metaphoric rep-
resentations. For instance, CareCruiser allows experts to observe
changes in physiologic data following an intervention using vi-
sual highlights and interactive brushing of line graphs [GAK∗11].
Meanwhile, Huron et al. [HVF13], use a sedimentation metaphor
to visualize dynamic data streams. However, neither of these repre-
sentations support all three of the temporal tri-event parameters.

The frequency tri-event parameter of streaming data has been
investigated in prior work to highlight dense and active regions
using kernel density estimation (KDE). The use of that non-
parametric density estimation is a popular method for performing
cluster analysis in high dimensional spaces [HK03, Sil86]. How-
ever datasets with heavy-tails can result in the loss of important
information [Ver12]. Numerous methods exist to quantize outliers
appearing in the heavy-tail. They are largely classified as adaptive
bandwidth estimation and most popular methods include ’balloon
estimators’ [T∗93]. To the best of our knowledge, the KDE method
has not been applied to visualize salient clusters appearing in phys-
iologic data. Our TIM visualization, using an adaptive bandwidth
KDE, along with other coordinated displays, is designed to help re-
searchers perceive and explore event features and event classifica-
tions in order to generate new hypotheses about clinical conditions.

There are also unique challenges that involve the temporal flow
of information, that emphasise the trajectory tri-event parame-
ter [CEH∗09]. One prominent work, ThemeRiver [HHN00] builds
on the metaphor of a flowing river to create smoothed stacked
charts of text themes over time, now generally known as stream
graphs. This technique, by virtue of its ability to highlight tem-
poral variations, has inspired the development of several modern
visualization designs, including FluxFlow [ZCW∗14], RoseRiver
[CLWW14], and LifeFlow [WGP∗11]. In the network security do-
main, Fischer and Keim apply the NVisAware visual analytic tool,
as part of the NStreamAware architecture for providing situational
analysis insight [FS14]. The NVisAware system in particular allows
the analyst to interact with dynamic feature data streams gener-
ated by an event stream algorithm. Xie et al., provide a algorithmic
method of highlight salient regions where patterns exist, and hiding
nonvariant event streams [XWR10]. They were able to reduce the
time required to detect abnormal events.

4. Background and Task Analysis

PhysioEx makes use of Artemis, an online analytic platform for
physiologic data streams which detects and classifies physiologic
events (PE) in real-time [McG13]. PEs are events generated by the
algorithm to detail temporal patterns of the data stream. The neona-
tal spells algorithm was executed against the retrospectively stored
raw data for a total of 47 patients, which generated PEs that were
saved to a database in real-time and used in this work. The study
was approved by the Research Ethics Board at our institution, and
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Figure 1: PhysioEx is a visual analysis tool for event stream analysis of multiple streams. Several Temporal Intensity Maps (left), in the
coordinated dashboard reveal the duration, frequency, and intensity of physiologic data over time, alongside a selected raw data display
(middle), and three visualizations (right, top to bottom): a sequence, linear, and stream graph.

all patient data was de-identified. One of the goals of that study
was to determine whether neonatal sepsis was present at the time
of suspicion of infection at the bedside.

To better understand the requirements of clinical researchers, we
asked three domain experts to describe specific tasks they currently
perform to predict physiological behaviours prior to the point of
suspicion of infection (PSI). The common tasks were:

T1 Identify the PSI. The researcher uses the PSI as an anchor for
subsequent analysis.

T2 Identify PEs in the respiratory physiologic signal before PSI. PEs
having breathing pauses greater than 20 seconds were noted and
associated with neighbouring clusters.

T3 Analyze PEs across heart rate and SpO2 data streams. Heart
rate signals and blood oxygen saturation signals are analysed to
determine downwards shifts before the PSI.

T4 Identify abnormal PEs. Abnormal PEs are flagged and some-
times investigated to verify algorithm accuracy.

T5 Create mental temporal picture of underlying physiology. Infor-
mation gathered from all previous steps were used determine a
hypothesis about the presence of infection.

Supporting these tasks is our design goal.

5. Design of PhysioEx

PhysioEx is illustrated in Figure 1, and consists of three groups
of views: three TIM views; the sequence graph, linear graph, and

streams graph; and three raw data views. The interface was devel-
oped using D3 [BOH11]. In this section we explain each compo-
nent in detail.

The first group of views, namely the Respiratory Pause TIM,
Heart Rate Flux TIM, and the SpO2 TIM provide the user with the
ability to rapidly analyse behaviours in event features stream. The
second group of displays assist with analysing event classification
data. A third view, when activated, provides the user with deeper
contextualization by providing raw data that would be observed at
the bedside. We mark the canvas with a red cross. This red cross in-
dicates that a blood result was obtained after a physician suspected
the infant of having infection. We do not show whether it was pos-
itive or negative to allow the researcher to use this position marker
to conduct explanatory research for generating hypothesis about the
onset of infection.

5.1. Temporal Intensity Map View

Each TIM provides users the ability to rapidly discern subtle be-
haviour in streaming data. We employ a novel use of the heatmap
visual encoding, where positions along the vertical axis represents
an aspect of an event’s nonlinear critical distance interval, such as
duration of breathing pause. It is termed a critical distance interval,
because it helps determine the PE’s severity. PEs are aggregated
into critical distance interval bins as determined by the density es-
timation function. Hence, durations with smaller values are rep-
resented at the bottom of the graph while larger durations appear
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Figure 2: Temporal Intensity Maps, compact visualizations for gaining rapid situational awareness of low-level behaviours in data streams.
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Figure 3: The four-step method of constructing the Temporal Inten-
sity Map beginning with identifying kernels.

near the top. The horizontal axis represents temporal range of the
dataset. A red cross is placed where a nominal clinical event (e.g.
PSI) exists, to support task T1.

In order to support task T2 and T3, we contribute a combined
adaptive bandwidth method of vertical binning, using the KDE gen-
erated probability density function (pdf) as illustrated in Figure 3.
We began the process by calculating the KDE pdf for the entire
dataset (Step 1). We utilized the scikit-learn to implement the den-
sity estimation [PVG∗11]. The top-hat kernel form, an alternative
to Gaussian, was selected as this kernel form involved less smooth-
ing which produced more kernels. The width was also made nar-
row, and set to a value of 0.2. These two modelling decisions in-
creased the likelihood of kernels identified in the heavy-tail of the
distribution. All PEs were then aggregated into hourly sets (Step 2)
and reduced to produce sample frequencies for each kernel (Step
3). The binning produces a two-dimensional array of PE critical
distance interval sums ranging from 0 to N, where N is the furthest
critical distance interval. The value of each element in the array are
used to encode opacity.

The visual encoding of the TIM is a heatmap controlled for
hue and opacity. The hue indicates the PE classification and is
metaphoric: red for heart rate which evokes the colour of blood,
and blue for desaturation of oxygen, due to blue-like colour of the
skin when oxygen levels fall. The hue selection supports T2–T4, in

which one must rapidly associate PE type. The opacity is controlled
by the frequency value. The width is controlled by available space
of the canvas, divided by the temporal range.

Where there are significant number of samples found in a par-
ticular kernel, the opacity score of each is reduced, and where the
frequency is low the opacity is increased (Step 4). Thereby, events
appearing in low-frequency kernels, such as in the heavy-tailed
portions, are represented with increased visibility. These heavy-tail
events, such as an extended breathing pause lasting several minutes
are clinically significant and warrant increased visibility. Moreover,
this method effectively addresses the requirement of highlighting
outliers involved in the task T2 and T3, where a constant opacity
score would have otherwise excluded them from view. The tem-
poral trajectory of the health status is visually elicited from ob-
servations made on each distinct view generated by the encoding.
As rectangles with varying hue are appended along the horizontal
temporal axis, the user is able to visually glean information about
ongoing changes in the physiologic signal. Finally, we considered
the use of bar graphs as an alternative design, due to their famil-
iarity. However, that encoding was not appropriate for illustrating
all three temporal properties without creating visual clutter. Due to
the nature of our dataset, the TIM encoding was more appropriate
for identifying both frequency (dense areas) and duration (vertical
dimension) along a temporal axis.

Figure 2 illustrates three uses of TIM, beginning with the respira-
tory pause map (Figure 2a), displaying data in the form of duration
of breathing pauses between 0–80 seconds. In this dataset intermit-
tent clusters of breathing pauses are seen throughout the entire du-
ration. Breathing pause durations are also seen extending to patho-
logical ranges above 21 seconds. The heart rate flux (Figure 2b) il-
lustrates a measure between zero variability (0%) to high variability
(100%) in heartrate. A sliding window sampling approach is used
to compare the instantaneous heart rate every second against the av-
erage of the previous 30 seconds. The percent change is calculated
and a block is added to the TIM at the appropriate height, if the
heart rate reduced (bradycardia). In this chart, clinical researchers
would be looking for repeated occurrences of severe bradycardia
(high percentage change), or periods of low overall variability (high
density low on the TIM). Both are indicative of pathological status.

Figure 2b shows a region of reduced variability (three columns
of lighter blocks) after 12 p.m. on Monday, and then a period of
high variability with more density (darker red blocks) from 3 p.m.
There is high oscillatory behaviour observed in this patient, poten-
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Figure 4: The Sequence Graph, illustrating a matrix of hours by
days (truncated to 10 hours). Each bubble’s radius encodes the to-
tal duration of episodes within that hour, and smaller bubbles are
drawn on top.

tially due to the influence of drugs or other systemic influences.
Finally Figure 2c illustrates the oxygen flux. The data for this vi-
sualization is measured using the same metric as heart rate flux,
however oxygen flux data is gathered each time a desaturation oc-
curs in the SpO2 signal. Observing Figure 2c, one sees a period of
low variability initially, followed by a region of higher variability
between 12 p.m. on the Tuesday and lasting 24 hours. Blocks at
the 100% level in the flux TIMs likely indicate data errors (such as
when a sensor disconnected) but are left in the chart as they may be
clinically relevant and should be investigated. To differentiate zero
data from missing data requires further research and improvements
in data collection.

The researcher can use the interactive brushing functionality to
highlight a region on any one of the TIM views, all other views are
immediately updated to highlight that section. Figure 1 illustrates
how each of the TIM views appear when a region is brushed. Here
the researcher is interested in 48 hours prior and 24 hours post an
infection event. Highlighting this region also triggers coordinated
updates across the linear and the streams graph for more detailed
analysis of event classifications.

5.2. Physiologic Event Classification Views

We developed three coordinated views to show PE classifications,
coming from Artemis, including the sequence graph, linear graph
and streams graph. We use similar hues with varying saturation to
highlight complementary PE classifications of varying severity. For
instance, an isolated bradycardia receives a more saturated pink
than a possible isolated bradycardia. Oxygen desaturation events
are blue.

5.2.1. Sequence Graph View

The first PE classification view found on the top right of 1 is the
sequence graph (highlighted in Figure 4). This view supports T5,
in which the user requires a rapid means of understanding temporal
discontinuous event data. The advantage of this representation is

3
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06 AM 12 PM 06 PM Tue 27 06 AM

Figure 5: The Linear Graph shows a log-transformed duration of
each event classification in a linear temporal view. Hue is used to
indicate event classification, and event duration is double-encoded
using size.

that it reveals events occurring during the same hour across multi-
ple days. This can be useful in associating the influence of routine
events, such as bed-side interventions to changes in physiologic
data. Each vertical position represents the same hour over multi-
ple days. Specifically, the horizontal x-axis shows progression over
24 hours, and the vertical y-axis shows progression of events over
days of the month. The axes can be configured to express seconds
(x) by minutes (y), or days (x) by months (y), each producing a
periodic view of high-level event classifications.

In order to control the size of circle in this view, we calculate
the sample frequency for every hourly epoch. Less significant PE
classifications receive a lower opacity, while more significant PE
classifications have higher opacity. This allows the user to visually
discern areas where greatest clinically significant PEs exist. The ra-
dius encodes for the log transform of the total duration in the hour
(default view, Figure 4). The transformed values are then sorted
in descending order and painted largest to smallest, producing a
layered view. The fill hue is determined by the event classification
type. The user can hover of the circle to reveal details of each inner
circle. An alternative to this design was to use a stacked bar repre-
sentation, which summarized the frequency of each event over the
hour. However that representation does not convey periodic events
that occurred over the same time-period spanning multiple days.

Figure 4 illustrates a vagal PE (green) at 1 a.m., followed by
central apnoea PE (purple), at 3 a.m., 4 a.m., and 6 a.m. (horizontal)
on 29th day of April (vertical). Possible isolated bradycardia (pink)
and possible isolated bradycardia (light blue) are sustained over the
next several hours. The researcher notices that a red cross, denoting
a PSI, is visible at 9 a.m. that day. The researcher notes that till that
period, the salient and clinically relevant PEs have become more
prevalent by integrating the observed frequencies of vagal, central
and possible isolated bradycardia and desaturation PEs.
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Figure 6: The Stream Graph illustrates the flow of event classifica-
tion frequency over the analysis duration.

5.2.2. Linear Graph View

The linear graph, Figure 5, supports T4 and T5, in which the user
identifies abnormal PEs as well as requiring detailed temporal view
of all PEs over time. The y-axis represents a log transform of PE
duration and x-axis the linear timeline view. PEs are plotted as cir-
cles where hue is determined by the classification type. The radius
is double encoded with the log transform of the duration value. Re-
duced opacity is applied to PEs that are less important, while PEs
with higher clinical significance maintain full opacity. Smaller bub-
bles are of low durations, while high duration events are larger and
have more prominence at the top of the graph. A tooltip is available
for additional information about each PE. Selecting a PE launches
an overlay view of the associated raw data graphs. Figure 5 illus-
trates several prominent vagal apnoea (green) PE appearing before
12 p.m. and continuing till 6 a.m the following day. Intermittent
central apnoea events (purple), along with possible isolated desat-
urations (pink) and possible isolated bradycardias (light blue), are
observed throughout the night. Event classifications are rendered
according to their frequency, and severity. Low severity events like
possible isolated bradycardia and desaturation are rendered first,
followed by the more significant PEs.

5.2.3. Streams Graph View

The third event classification view, illustrated in Figure 6, is the
streams graph, revealing continuous event classification frequency
over time, with the data summed to a count per hour and supports
tasks T3–T5. Each stack is coloured with the event classification
hues shared across all event classification views. A tooltip is avail-
able to explore details about the event classification. Brushing a
stack causes all other stacks to fade, giving visual prominence to
the hovered stack and reducing clutter. Figure 6 illustrates rela-
tively high frequencies of possible isolated bradycardia (pink) last-
ing from the 12 p.m. mark, along with possible isolated desatura-
tions (light blue), until 12 a.m.. Following that, possible isolated de-
saturation events diminish, only to return again in the late afternoon
of the 6th. Between this range, there are also several other PE clas-
sifications identified, such as intermittent central apnoea episodes
(purple), and vagal apnoea (green). An alternative to this design
was to use line graphs, while commonly utilized in electronic med-
ical records, the line graph encoding fared poorly when compared
to the streams graph. The streams graph, through the use of filled
area, allowed the user to rapidly elicit information about the most
frequent event within one or more time windows.

Figure 7: The Raw Data View displays sensor data using 3 line
graphs. The highlighted region corresponds to a PE classification,
and the white regions before and after the event are 30 second
buffers for improved contextualization.

5.3. Raw Data View

The final user interface component, designed to primarily support
T5, which serves as a critical step in confirming whether a patient is
believed to be positive for sepsis, is the raw data display illustrated
in Figure 7. In this view the respiratory pause graph is displayed
at the top, followed by the heart rate trace, and finally the oxygen
saturation graph at the bottom. This view is activated when the user
performs a selection on one of the PE classifications in the linear
graph view. In this view the analyst can immediately access low-
level sensor data that lead up to the PE classification. This line-
graph method is a familiar design for displaying sensor data. A
background band is appended to the chart, representing the actual
duration for the event classification.

5.4. Coordinated Analysis

When an analyst selects a portion of a graph using interactive
brushing, all other graphs immediately update to highlight that
section. For instance, in Figure 1, the highlighted region appears
prominent in colour on each of the TIM displays, and is also high-
lighted the streams chart. The linear chart is zoomed in to show the
selected time period in detail, from 6 a.m. of the 26th to 6 a.m. of
the 28th. Due to its nature as a summary graph, the sequence graph
maintains its view to provide high level details. In Figure 1, the ana-
lyst has also selected a central obstructive event on the linear chart,
thereby revealing the low level raw physiologic waveform traces in
an overlay.
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6. Analysis Scenario: Neonatal Spells

To fully demonstrate the features of PhysioEx we synthesized the
following analytic scenario based on observations and comments
from semi-structured interviews held with four expert participants.
The scenario corresponds to the PhysioEx view in Figure 1.

A neonatal researcher is conducting an analysis of a patient case
to explore physiological patterns that led up to the red cross that de-
notes the point of suspicion of infection. Upon launching a patient
dashboard he is drawn to the respiratory pause TIM. The researcher
knows from experience that respiratory pauses lasting longer than
20 seconds are pathological and notices that there are very few re-
gions in the map where longer pauses exist. This informs him of
the infant’s rather uneventful respiratory physiology. He then looks
below to the Heart Rate Flux TIM to analyse the corresponding
behaviour in this physiologic stream and notices that there are big-
ger swings in heart rate about 2–4 hours prior to the suspicion of
infection, marked by one red cross on all plots. The Oxygen Flux
TIM looks normal. The researcher then uses interactive brushing to
highlight the two to four hour period. This action updates all TIMs
by highlighting the area in focus with colour, and desaturates all
other areas. At the same time, the linear map is also updated to
show events that manifest during the highlighted interval.

The researcher looks at the linear graph to see that in this win-
dow there is a central apnoea episode that lasted for 107 seconds.
To analyse the event further and to confirm the low-level sequences
he selects the event to reveal raw physiological signals. The physio-
logical signals look depressed, to confirm that this behaviour is not
seen throughout other event classifications, he selects the neigh-
bouring bubble. There again, the event classification shows abrupt
breathing on the impedance respiratory waveform chart of the Raw
Data view. He moves to looking at the streams graph to get an
overview of all central apnoea event classifications that occurred
over the entire timeline by hovering over the stream coloured in
purple. Having seen other central events also occurring well in ad-
vance of the red cross, the researcher generates a hypothesis about
the infection state of this infant. He believes this infant is not sus-
pected to have infection.

7. Expert Evaluation

We conducted an expert evaluation to gain a better understanding
of the utility of PhysioEx for clinical researchers. The primary con-
dition in this study was the visualization technique, with two levels.
PhysioEx was compared to a stacked bar view that is currently used
to perform clinical research of neonatal spells behaviour [MJE∗13].
Due to the difficulty in recruiting a large number of highly special-
ized domain experts, we adopt a primarily qualitative evaluation
approach, engaging the available experts in real analysis tasks and
both observing their experience and requesting their feedback, to
build a holistic understanding of the potential for PhysioEx.

Participants: We engaged four domain experts with experience
working with neonatal physiologic data on a day-to-day basis rang-
ing from five to 35 years. Three of the experts were males and one
was a female. All four experts report using the computer at least
once a work day for analytic purposes. Both visualization tech-
niques used in the study were unknown to all participants.

Figure 8: Stacked bar representation of cardiorespiratory behaviour
prior to the suspicion of infection.

Dataset: The study dataset consists of 29 patients who were sus-
pected of infection and for whom we had truth data about the pres-
ence of infection. Suspicion of infection was defined by the pres-
ence a blood draw for a laboratory test for infection. The results of
the laboratory test provided the truth data for this study. The apnoea
event classification algorithm was run over seven days’ worth of
data for each patient: 120 hours before and 48 hours after the time
the blood culture results were received. Prior research suggests that
neonatal sepsis may be detected in physiological data several days
before current practices suspect it at the bedside. We decided to
use this case study as it provides an exploratory means by which
the domain experts can investigate and potentially arrive at novel
findings.

Task and measures: The task of the domain experts was to use
each visualization to determine whether the patient has an infection
(sepsis) and state any additional insights they had about the data.
We measured the accuracy of determination of infection and the
time taken in analysis. In addition, we engaged participants in a
semi-structured interview about their analysis process, preferences,
and usability issues which arose. Screen and voice recording was
used to allow for detailed analysis as well as easy transcription of
the collected data.

7.1. Stacked Bar Graph

We compare PhysioEx against a stacked bar graph, illustrated in
Figure 8, which has been used by clinical researchers to understand
trends in neonatal spells (PEs relevant to the neonatal domain) pre-
ceding a point of suspicion of infection [MJE∗13]. This view pro-
vides a higher level and non-interactive view on the physiologic
data by counting event classifications every second and summariz-
ing them on an hourly basis. In the stacked bar graph the levels
refer to event classifications (in order): all normal, heart rate vari-
ance changes, respiratory pauses, oxygen desaturation, and blood
pressure drop. The stacked bar view is aligned with the time of the
suspicion of infection (red cross on PhysioEx) at the zeroth hour,
then all the preceding events sorted by hour to the left. An analyst
would start at the zeroth hour to analyse the spells behaviour. Fig-
ure 8 shows that beginning at the -12th hour up to the -4th hour
there are sustained fluctuations in the infant’s cardiorespiratory sta-
tus. The infant seems to be improving as it approaches the zeroth
mark (more times classified as normal). Note that there is missing
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data in hour -7, perhaps due to infant movement or sensor malfunc-
tion.

7.2. Procedure

Each session began with a brief introduction to the study and
a semi-structured interview to assess participant prior knowledge
about the domain of neonatal care and spells. This was followed by
a series of 7 training trials, 11 timed experimental trials, and a brief
questionnaire eliciting feedback on the interface design, repeated
for each visualization technique. Due to data availability, the same
dataset of 7 samples (in random order) were used for the training
trials in both conditions. For the experimental trials, two different
datasets of 11 samples each was used, one for each condition. The
ordering of technique and experimental datasets was counterbal-
anced. There was a total 2 techniques × 11 trials × 4 participants
= 88 trials. The analysis task was repeated for each training and ex-
perimental trial. Feedback about the correctness of determination of
infection was provided during training. Participants were asked de-
scribe spells activity around the point of suspicion of infection and
to state whether an infection was present. At the end of the experi-
ment, a brief questionnaire was administered to collect participant
preference between techniques. Experimental sessions lasted two
hours and participants were able to take breaks as needed.

7.3. Results

In this section we report the results of the study comparing Phys-
ioEx and a stacked bar of complex physiologic data. The accuracy
of determination of sepsis was uniformly distributed and below
50%, for the dataset containing 7 sepsis and 22 non-sepsis patients
for both conditions, thus we did not investigate further. We instead
focus our analysis on the quality and depth of insights expressed
during the analysis process, and the subjective feedback.

7.3.1. Identification of Physiological Behaviours

Experts provided a range of comments on the stacked bar method of
representation while they investigated physiological status of that
infant. Although the stacked bar provided a simple interface for
identifying how much of the hour was attributed to one physiolog-
ical measure, it did not provide additional and more salient infor-
mation about the changes that took place within the hour. Experts
found it difficult to discern the events that occurred uniformly in
the hour, the associated severity, and distribution of durations. The
time to analysis was however, rapid, with a majority of the analysis
being completed within ten seconds.

Meanwhile PhysioEx allowed them to rapidly elicit physiologi-
cal behaviour, frequency within an hour, the duration of all event
classifications aggregated in an hour in addition to duration of sin-
gle classifications. When asked to describe the physiological status
of the infant, experts often spent several minutes describing the in-
tricate behaviour, frequency, duration and sequences of events seen
in TIMs and also on the sequence and streams graph. This was seen
consistently, with analysis time ranging from 2-10 minutes per pa-
tient. One expert comments about the Respiratory TIM: “I see a
burst of activity here, on this Friday starting before 11 p.m., and
going through to about noon, then I see a trivial amount of activity

about 24 hours later, and then I see another burst of activity start-
ing about midnight starting about the 28th, which seems to be of
the same intensity as the first burst I observed but has a longer du-
ration. In the middle, I see very little variation.” The stream graph
was also noted to be a unique tool in the domain of physiologi-
cal research. Experts had not encountered this representation and
therefore required some time to adapt to it. One expert found that
he was relying on it as a final ’truth’ indicator, after having analysed
all other representations.

7.3.2. Hypothesis generation

Using the stacked bar view, experts found it difficult to generate hy-
potheses unless there was a clear and distinguishable trend. Where
events occurred without any clear trend, all experts stated difficulty
with determining whether these events had any relationship with
the point of interest at the zeroth hour. All experts described the
colour scheme to be very favourable when determining patterns and
trends. One expert mentioned “I’m looking for the stacks with a lot
of yellow, the red is distracting for me, but the yellow is interest-
ing”. Another expert physician stated that “[the stacked bar] is too
simple, it doesn’t work for me”.

Experts described PhysioEx as useful, and powerful when gen-
erating hypotheses, they also mentioned that the coordinated in-
teractive brushing was most useful when they wanted to reaffirm
incremental patterns. They found the coordinated brushing and
highlighting across all TIMs provided the most benefit in terms of
closely analysing neonatal spells preceding the infection suspicion
point. The ability to select the event classifications to reveal low-
level sensor data was appreciated by all experts and heavily uti-
lized by one expert. Two experts were able to derive bed-side inter-
vention information from the patterns exposed on the Respiratory
Pause TIM. They revealed information about potential respiration
modality of the infant. Some quotes received from experts include:

“Oh wow look at that. . . look at that. . . this is a baby that got in-
tubated. . . a fully manually intubated baby. Well this child cannot
apnoea. . . if you look at the respiratory pauses they are all so uni-
form.”

“Look at the heart rate variability, it swings everywhere and then
it comes back. [. . . ] It looks like they had a ventilator mode change,
maybe to biphasic, but they’ve also taken a culture at the same time,
this is an odd practise, we tend to do things one at a time.”

7.3.3. Satisfaction of Use

Domain experts who used both the stacked bar view and PhysioEx
reported greater satisfaction with the simplicity of the former, but
expressed concern over excessive simplicity and hiding of poten-
tially useful data. When analysing trends on the stacked bar view
experts found that while they were able to verbalize trends of high-
level event classifications more easily, they were unable to provide
detailed descriptions. The stacked bar, however, provided the do-
main experts with a familiar format. This familiarity factor con-
tributed to reduced training times.

Experts were encouraged by additional details presented in Phys-
ioEx. The TIM representations were favourably received by all.
They paid keen attention to the behaviours expressed in heart rate
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and SpO2 TIMs, and stated that it was helpful when conceptualiz-
ing the infant’s status over many hours. The sequence graph was
used by three experts for determining sequences of events prior to
the suspicion of infection, the fourth expert did not use the display
at all. On the simplicity of PhysioEx, the responses were mixed.
While domain experts greatly appreciated the increased level of
detail, it also proved to be cognitively demanding task, requiring
learning new interaction methods for selecting, filtering, and re-
trieving information about physiological signals. The experts at-
tributed the cognitive load due to the overwhelming number of pos-
sible events that had prominence in almost all patients. Moreover,
experts also noted the usefulness and utility of PhysioEx could be
even further improved with the addition of contextual information,
such as the infant’s gestational age, gender, method of respiration,
and other comorbidities.

7.3.4. General Comments

Experts provided numerous comments on the usability and poten-
tial utility of PhysioEx. Two experts, also physicians, mentioned
that TIMs may contribute additional means of gaining insight on
subtle physiological behaviours of the infant that are currently un-
available for bedside decision makers. Six coordinated views, as
currently instantiated in PhysioEx, were found to be useful for re-
search but likely too complex for use at the bedside. All experts
using the TIMs representation were immediately cognizant of the
data quality available for analysis. Data quality is an ongoing chal-
lenge in the neonatal intensive care environment. However, obtain-
ing consistent and continuous data samples is very difficult, due to
frequent disconnects from sensors.

8. Discussion and Future Work

We used an expert evaluation consisting of four domain experts
analysing neonatal spells behaviour in an attempt to predict the
likelihood of neonatal sepsis. Although the results of determina-
tion of sepsis in our dataset was inconclusive, our study revealed
that PhysioEx deeply involved clinical researchers in the analytic
pipeline. Experts using PhysioEx were able to verbalize subtle
physiologic behaviour spanning numerous days and for numerous
patients. Many of the insights discovered with PhysioEx were hid-
den by the stacked bar. While the time for using PhysioEx was
much longer, this may be explained by the richer interface, interac-
tivity, and novelty of the visualization. Rapid analysis is needed in
bedside situations, but for retrospective research, such as analysing
the relationship of physiologic measures, spells, and neonatal sep-
sis, depth of insight is more important than speed.

PhysioEx gave experts the first opportunity to interactively ex-
plore physiological event features and event classifications. To our
knowledge, there are currently no other tools that provide inter-
active exploration of detailed physiological changes of low-level
clinical events. However, introducing such a novel tool does have
limitations. Some experts experienced fatigue after enduring a long
training phase and then analyzing a total of 18 patients on Phys-
ioEx. Contributing to the fatigue was the significant cognitive load
imposed by using a novel tool to perform a difficult task. The TIM
views provided experts with a simple and rapid method of appre-
ciating physiologic behaviour. Most experts relied on the TIMs to

base their decisions on whether the infant was experiencing normal
or abnormal changes in physiology. Dense and low density regions
were rapidly identified by all experts. This information was then
augmented by the event classification display. Experts, especially
practitioners, also used the TIMs to characterise the data quality
for that particular patient. Since this is a commonly faced issue in
NICUs, the ability to see drops in data quality gave more insight
about the infant and their management.

The sequence graph was heavily utilized by some to track incre-
mental hourly changes leading up to the point of suspicion. One
expert commented that the bubble matrix provided a unique ability
to recognize patterns that commonly occur at various times of the
day. Events such as blood draw occurring in the afternoon, loss of
data for short durations, and transfer of the infant to other units,
were speculated. One physician was able to associate the periodic
appearance of bradycardia during morning rounds, and expressed
anecdotal evidence to suggest this relationship. While this informa-
tion was provided to the experts, the ability for the experts to aug-
ment clinical expertise provides an opportunity as future work for
automated annotation capabilities for PhysioEx. The automated an-
notation of events would further supplement researchers with much
needed context to explore the event space in more detail.

PhysioEx was found to provide a greater advantage to explain
neonatal spells behaviour than the current alternative. One expert
physician with extensive involvement in neonatal spells research,
had mentioned that they are now inclined to invest a day in training
a neonatal fellow so they would be better able to describe phys-
iological behaviour of spells. There are however, limitations with
PhysioEx and our preliminary study. We only tested PhysioEx with
four expert participants drawn from the larger clinical researcher
population. Moreover, there are no established clinical links yet be-
tween neonatal spells and infection. Therefore, the experts partici-
pating in the study were not looking for known associations. Many
experts noted that lack of contextual information (patient metadata)
as a limitation of both techniques. We had developed PhysioEx to
cater to exploring physiological data, however in future work in-
corporating clinical information would certainly be highly advan-
tageous for supporting analytic activities. To address the cognitive
overload from analysing several patients independently, in future
work we intend to propose new techniques that assist in analysing
population cohorts in a single view.

9. Conclusion

In this paper, we contribute a novel visualization technique, the
Temporal Intensity Map, and introduced PhysioEx, a visual ana-
lytic tool for complex multidimensional sensor data exploration.
We present a task analysis for designing visualization displays for
the complex and heterogeneous sensor network environment in
neonatal care and draw on this analysis to inspire design. Our pre-
liminary study supports further investigation into PhysioEx as an
important addition to the tools available for clinical researchers. In
future work we aim to deploy PhysioEx to support additional use
cases, such as exploring physiological behaviours for other clinical
conditions. Moreover, we aim to integrate more contextual infor-
mation such as clinical histories into PhysioEx for the development
a more tightly integrated physiological clinical research system.
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