
OR I G I N A L AR T I C L E

Computational skills by stealth in introductory data science
teaching

Wesley Burr1 | Fanny Chevalier2,3 | Christopher Collins4 |

Alison L Gibbs3 | Raymond Ng5 | Chris J Wild6

1Department of Mathematics, Trent
University, Peterborough, Ontario,
Canada
2Department of Computer Science,
University of Toronto, Toronto, Ontario,
Canada
3Department of Statistical Sciences,
University of Toronto, Toronto, Ontario,
Canada
4Faculty of Science, Ontario Tech
University, Oshawa, Ontario, Canada
5Department of Computer Science,
University of British Columbia,
Vancouver, Canada
6Department of Statistics, University
of Auckland, Auckland, New Zealand

Correspondence
Chris J Wild, Department of Statistics,
University of Auckland, Auckland,
New Zealand.
Email: c.wild@auckland.ac.nz

Abstract

In 2010, Nolan and Temple Lang proposed “integration of computing concepts

into statistics curricula at all levels.” The unprecedented growth in data and

emphasis on data science has provided an impetus to finally realizing full

implementations of this in new statistics and data science programs and

courses. We discuss a proposal for the stealth development of computational

skills in students' exposure to introductory data science through careful,

scaffolded exposure to computation and its power. Our intent is to support stu-

dents, regardless of interest and self-efficacy in coding, in becoming data-

driven learners, who are capable of asking complex questions about the world

around them, and then answering those questions through the use of data-

driven inquiry. Reference is made to the computer science and statistics

consensus curriculum frameworks the International Data Science in Schools

Project (IDSSP) recently published for secondary school data science or intro-

ductory tertiary programs, designed to optimize data-science accessibility.

KEYWORD S

accessibility, computational thinking, data science education, statistical thinking, statistics
education, teaching statistics

1 | INTRODUCTION

In 2010, Nolan and Temple Lang [27] called for “computing
concepts to be integrated into the statistics curricula at all
levels.” At the time of their paper, data science had not yet
received the attention and broad consciousness it has cur-
rently, yet their call for a “significant cultural shift to
embrace computing” reflected many ongoing developments
in statistics and data science education, including initiatives
in statistics education that fully embrace computation[2],
and anticipated full-scale collaborations between computer
scientists and statisticians. The International Data Science
in Schools Project (http://idssp.org/, [22]) is one such col-
laboration, creating resources for data science education in
secondary schools and introductory tertiary levels. In this

paper, we address and demonstrate the approach to compu-
tation advocated by the project.

The recent emphasis on data science addresses the
needs of a rapidly changing society in which leaders and
citizens (community members) should have an under-
standing of how the use of appropriate methods for learn-
ing from data can allow us to face important challenges,
from the development of self-driving cars to addressing
climate change. IDSSP is a collaboration between statisti-
cians, computer scientists, and educational experts in
these fields, aimed for a broad range of students, and also
to motivate talented students to pursue further study in
data science to address these challenges.

The IDSSP team has developed curriculum frame-
works [22] for both teaching data science in the final

Received: 22 May 2021 Revised: 27 May 2021 Accepted: 27 May 2021

DOI: 10.1111/test.12277

S34 © 2021 Teaching Statistics Trust. Teaching Statistics. 2021;43:S34–S51.wileyonlinelibrary.com/journal/test

https://orcid.org/0000-0002-2058-1899
https://orcid.org/0000-0002-4520-7000
https://orcid.org/0000-0002-0408-3435
https://orcid.org/0000-0003-0115-6448
mailto:c.wild@auckland.ac.nz
http://idssp.org/
http://wileyonlinelibrary.com/journal/test
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ftest.12277&domain=pdf&date_stamp=2021-06-25

2 years of secondary studies or at introductory tertiary
level, and for preparing teachers to teach data science.
The focus of the frameworks is learning from data, and
the development of the necessary statistical and computa-
tional skills and corresponding understanding are intro-
duced as needed. A key IDSSP design criterion has been
that data science learning should be accessible to a very
broad spectrum of students and not just a small minority
for whom coding comes easily. It is critical that the com-
munity interested in the development of data science
confronts the danger that the paralyzing “math anxiety”
problems that have bedevilled approaches to statistics
education to a greater or lesser extent over many years of
statistical development, might simply be replaced by
“coding anxiety” in data science.

In section 2, we describe how the desire for a broadly
accessible and foundational data science curriculum
motivates a stealth approach to computation, with refer-
ence to IDSSP. Section 3 details this approach to compu-
tation, and section 4 gives two case studies to illustrate
how advanced topics in data science could be brought
within reach of senior secondary school and introductory
tertiary students when appropriate scaffolding has taken
place.

2 | CONTEXT AND MOTIVATION

2.1 | Foundational data science and
IDSSP

The ubiquity of data and computing power has led to a
burgeoning demand for people with professional data sci-
ence skills and the need for all citizens to understand the
role of data in the decisions in their lives. Furthermore,
advancing technology is empowering a broader spectrum
of citizens to step beyond simply understanding the role
of data to gaining significant capabilities in using data.
Hence the educational system needs to include founda-
tions in data science, to better enable future learning of
important elements of data science for multiple disci-
plines as well as the more specialized learning leading to
the professional practice of data science.

Data science problems require diverse perspectives
and approaches to avoid bias and provide better solu-
tions. The practice of data science is often described as
being essentially a team or collaborative enterprise,
requiring the bringing together of skills relating to data
and computing. Statistics has been both a user and driver
of computing technology development since the first
computer occupied a whole basement. Big data, data
availability and massive computer power have brought
data science “out from the back room” and have both

driven, and been driven by, statistics and computing. The
statistical sciences are inextricably linked to all endeavors
involving data, variation and uncertainty across disci-
plines, business, industry, government and society. Gib-
son [18] defines statistical leadership as collaborative
leadership. The exhortations by many over many years
for teaching statistics to reflect the practice of statistics,
are now being extended to “greater data science” [9].
However, one describes statistics and data science, they
are clearly inextricably linked together as a broad disci-
pline, and it is imperative that this is reflected in
education.

The IDSSP aim is for data-science education to be
valuable, accessible, enjoyable and enticing - conferring
skills that are valuable for student's future lives, further
study and careers; accessible to a broad spectrum of stu-
dents; enjoyable for both students and teachers; and entic-
ing in the sense of arousing in students (and teachers) a
desire to learn more.

The purpose of the IDSSP is to promote and support
the teaching of introductory data science everywhere, not
to be fine-tuned for any particular country. Because of
the extraordinary variety of educational jurisdictions
across (and even within) the various countries involved,
and differences in patterns of prior educational exposure,
it would be impossible to create a single course/curricu-
lum that would satisfy all jurisdictional requirements.
We note that “curriculum” is a dangerous word in an
international context because it means rather different
things in different countries but there is no other word
that serves us better. The curriculum frameworks devel-
oped are designed for flexible use by curriculum
designers, course developers and teachers for guidance
and ideas when preparing curricula and courses to meet
their own local needs and challenges. Due to this, the
IDSSP frameworks are much more detailed than might
be expected, however, their topic-driven presentation
only provides a map of a landscape to be traversed and
not an ordered set of instructional sequences for travers-
ing it; see [16,14] for further discussion and examples of
problem-driven strategies.

In preparation for development processes in which
statisticians and computer scientists can work together
on a shared enterprise, IDSSP statisticians and computer
scientists reached a common understanding of what a
modern course in data science would most-desirably con-
tain. This involved coming to understand one another's
differing preconceptions and priorities and arriving at a
consensus, an endeavor that inevitably involves compro-
mise. As it turned out, we were pleasantly surprised at
just how easy it was to arrive at shared perspectives.
Apart from use of terminology, attitudes to computer pro-
gramming were the biggest area of difference. To the

BURR ET AL. S35

computer scientists it was completely obvious that pro-
gramming has to be a major component of “data sci-
ence.” In the Computer Science tradition, programming,
one of the major contributions of the area, is taught
directly. Without question, programming skills and an
appreciation of the power of programming had to be
advanced even if actual expertise need not be a universal
end-goal. For the statisticians, programming is just a
means to statistical ends with a broad range of opinions
about how much, if any, programming needs to be
involved. Additionally, a fundamental tenet of IDSSP is
accessibility for all students. Programming “require-
ments” could not, therefore be prescriptive. We had to
make allowance for different strategies that could be
applied to cohorts with different backgrounds.

This then begged the important question of what we
wanted all students to experience with regard to com-
puter programming in data science. The barest essentials,
the team concluded, are:

• for students to gain an appreciation for the usefulness
of code and its power for automating data science
tasks;

• preventing fear of coding from ever taking hold;
• building confidence through starting to make relatively

minor modifications to working code;
• and starting students on a journey toward learning to

read code like a story, a sequence of human-
understandable instructions, and toward learning to
write their own code.

The IDSSP frameworks are largely agnostic about
code use. Only one Topic Area in the frameworks, enti-
tled “The data-handling pipeline,” focuses explicitly and
systematically on programming ideas. But, for the rest,
we envisage that the elements above can be introduced
by stealth, so that experience and confidence gradually
accrue. In subsequent sections we will discuss and illus-
trate some stealth strategies. The goals are: “This is not
that hard. It is really useful and it can even be fun!”

2.2 | A Stealth Approach to Computation

Motivation is crucial to learning, influencing the “direction,
intensity, persistence, and quality of learning behaviours in
which students engage” [1,pp. 68–9]. Among the factors
that have been shown to positively influence learners' moti-
vation are problems they value as interesting and important
[26]. Moreover, harnessing this interest can make the need
to learn technical content attractive to a diverse group of
students. In addition to working on problems they find
interesting, students must also believe that they can and

will be successful in order to be motivated to put in the
effort to learn [1,p. 76]. Thus, we need to avoid barriers to
self-efficacy. Mathematics anxiety is a well-studied and
widespread problem [24]. Similarly, statistics anxiety [28]
and programming anxiety [6] have been identified as dis-
tinct but related constructs that may also contribute to neg-
ative student experiences.

Fundamentally, however, data science requires signif-
icant levels of computation. Whether by using dash-
boards, graphical user interfaces (GUIs), or lines of
computer code, one cannot work with data without
somehow instructing a computer to perform some heavy
lifting. It is simply not feasible to do practical, interesting
and engaging problems by hand in this field. Thus, to
truly develop student skills, computation (but not neces-
sarily coding) must have a central role.

By stealth approaches, we simply mean that we do
not tackle something big and potentially scary
(in particular, learning to write computer code) head on -
at least not initially. Instead, initial learning happens tan-
gentially in the process of trying to do other things. The
ignition of motivation and interest in students can drive
their desire for skills to improve their ability to better
tackle the interesting problem(s), and then the required
skills gained organically via student-driven desire and
need. For example, Fergusson and Wild [16] demon-
strated stealth approaches to early encounters with
harvesting and using data from online databases via APIs
(application programming interfaces). Their teaching-
and-learning design principles prioritize student engage-
ment and accessibility.

In general, good teaching is often a stealth activ-
ity [31]. Students' curiosity and desire to learn can be
encouraged by providing motivation through interesting
problems that align with their interests or for which
teachers have ignited an interest. To solve such problems,
students then need new skills. Learning objectives related
to the acquisition of these skills can be disguised through
activities such as games or problems from application
areas. This stealth motivation has been used in a variety
of other settings to teach computational and quantitative
reasoning. Yevseyeva and Towhidnejad [39] motivated
the development of computational thinking through the
analysis of a recent nuclear accident in a secondary
school chemistry class; Shreve [32] describes the use of
computer games to motivate learning; and Gunn [19]
describes the teaching of quantitative methods in political
science through the study of election data.

Data science is a natural environment for stealth
learning of computer programming skills because we
have bigger purposes in play (understanding data) and
we do not necessarily have to write code to be able to
pursue the majority of that data understanding. In this

S36 BURR ET AL.

way, learning concepts-and-skills for data analysis and
learning to work with computer code can occur in paral-
lel with very little constraint on the relative speeds at
which each of these threads has to be advanced. This
leaves these settings wide open to teacher or system
choices, taking into account the background and inclina-
tions of their cohort of students.

3 | BUILDING COMPUTATIONAL
SKILLS

The IDSSP frameworks were designed to provide greater
access to many valuable areas that have previously
received no or insufficient emphasis in introductory sta-
tistics or computer science. There needs to be much more
emphasis on: data acquisition, provenance, ethics, pri-
vacy, security and sovereignty; data wrangling techniques
and the whole data-handling pipeline. For approximately
two decades, statisticians and statistical educators have
advocated, and been gradually introducing, more cover-
age of visualization techniques (including interactive and
dynamic graphics) and more multivariate data and con-
texts in introductory treatments, and these must now
become the norm rather than the exception. Exposure to
many new areas is provided for by including selections
from introductions to supervised and unsupervised
machine learning, geolocated (map) data, seasonal time
series data, text mining and analytics, image data, and
recommender systems (which have attracted a lot of bad
publicity recently for their putative roles in spreading
conspiracy theories, and societal polarization, on social
media). It would simply be impossible to experience
much of this in a reasonable timeframe if students were
required to write detailed code!

As with long-established principles in learning statis-
tics, to learn data science, students must do data science,
and as discussed above, this requires a variety of levels of
computational skill, depending on the desired outcome.
In this section, we describe some specific examples to
provide clarity as to possible perceived implementation
paths. Computer scientists and statisticians alike agree,
as in the IDSSP team, that specifying languages or even
classes of languages is too restrictive for a curriculum
framework intended to assist in developing courses in
many different educational contexts.

Through the remainder of this chapter we often make
use of the descriptors high level and low level. We use
these in ways that align with their use in the area of
thinking skills and also in computer programming. “High
level” relates to working with higher levels of generality
and “big pictures.” “Low level” relates to lower levels of
generality, programming “from scratch,” and doing all

the details. It must be emphasized that this usage does
not refer to high levels of technical competence or to
higher levels of education.

3.1 | Accessibility and goals for
computation

Modern software can contribute enormously to making
statistical and data science concepts accessible to a broad
range of students and for equipping the students with
substantial capabilities to apply these concepts in practice
to interesting, real, complex data. Using computers run-
ning modern software is fundamental to any serious
exposure to data science. This has long been an issue in
teaching statistics, and now raises more serious issues of
access to technology (a problem COVID-19 lockdowns
have highlighted). Such issues are ongoing, and require
championing, time and adaptation in different educa-
tional contexts.

However, for students to feel that they are capable of
success, they need to use modern computers and software
to learn from today's complex data from a wide range of
sources. All of the software/apps the vast majority of peo-
ple use, on their phones or computers, use GUIs (graphi-
cal user interfaces) to enable users to tell their app what
they want it to do. So this is the computing mode that
students are already familiar with. To minimize coding in
data science, it is possible to leverage the very wide vari-
ety of capabilities that can be accessed through GUI sys-
tems. When code is used, we advocate heavy use of
“high-level functions.” For example, the typical objective
for programming in computer science courses is pro-
gramming mastery, so that the student can write code
from scratch given a task description—typically begin-
ning with small, easily understood tasks. In such a frame-
work, the eventual result is long sets of detailed
instructions solving small problems. By comparison, most
programming done by statistics and data science practi-
tioners makes heavy use of calls to general functions
written by others, whereby much shorter commands
result in a great deal of sophisticated processing; here we
call these high-level functions. Statistics and data science
education needs to work with high-level instructions
(as practitioners do) because we need our students to
become capable of obtaining serious insights and
accomplishing powerful results early, so as to support
their motivation and willingness to believe in their own
learning capabilities. This is much more difficult to
accomplish using lower-level (more detailed, “doing
everything”) programming approaches. This also illus-
trates the parallels between too much programming and
too much mathematics in statistics and data science

BURR ET AL. S37

education. Section 3.2.3 provides more detailed demon-
stration of the distinctions between high and low levels.
Statistics and data science students also need to know
that “do it yourself” is a very bad practice when well-
tested software exists. It is not just an inefficient use of
time, it also leads to large numbers of unnecessary errors.

In section 3.2, we expand on our vision for how cod-
ing skills can be developed in this context.

3.2 | Exemplar pathways for coding
growth

The use of GUI structures (section 3.2.1) and system-
generated code (section 3.2.2) in parallel allow for natural
evolution in skill on the part of students, starting at the
point-and-click level of data analysis, and through care-
ful, judicious use of system-generated code, slowly
removing training wheels and working into modification
of pre-written and provided code strings. This, if taken to
its natural conclusion, should eventually result in stu-
dents who have gained sufficient mastery of the concepts
to be able to write their own snippets of data analysis
code (section 3.2.3), fulfilling the core programming goals
discussed in section 2.3. Furthermore, this progression
has no set time scale attached, so one implementation for
a topic could simply never leave a GUI framework,
whereas another (perhaps with a prerequisite of a com-
puter science class) might leap immediately into code.

The use of Jupyter notebooks (https://jupyter.org/)
and R Markdown files (https://rmarkdown.rstudio.com/)
for reproducible analyzes is also a natural medium for
introducing code re-use and mastery, by providing
learners with an already functional literate document
[23]. These types of documents, which are used by many
professionals, combine pieces of textual narrative and
chunks of computer code in a single source file. Such files
can be compiled, at any time, to generate an output docu-
ment in which outputs from the computer code are paced
at the appropriate positions in the narrative. Reading and
understanding what such a document does can then be
scaffolded to allow for modification (“change a variable”)
or extension (“what if we consider this other factor?”),
and can provide a good medium for implementing
stealthy introductions to coding.

Later chunks of code can be combined to automate
whole sequences of data wrangling and analysis steps
with the intent of enabling students “to gain an apprecia-
tion for the usefulness of code and its power for automat-
ing data science tasks” (an essential goal listed in
section 2.1). This is the idea of a data handling pipeline.
Sufficiently motivated students may be guided toward
the use of more complex data sources that necessitate

the introduction of some sophisticated multi-stage data
wrangling techniques to transform them into formats an
analysis program can work with.

3.2.1 | GUIs as a vehicle for growth

Into this discussion, we would like to add some cognitive
realities about human memory. Short-term memory is a
severely limited resource; studies reported by Cowan
[7,8] suggest that the average person can only hold two to
six pieces of information in their attention at once. Thus,
if someone has to invoke and connect too many ideas at
once we quickly run into the problem of cognitive over-
load. Additionally, long-term memories for the details of
how to do things fade fast when they are seldom used.
This is a particular problem for programming. Both pro-
gramming and the use of many GUI systems are beset by
the problem of knowing and remembering names. You
cannot do anything until you know, and remember, the
name of the thing you want to do. This is a significant
barrier to getting started and also results in significant
time-loss getting back up to speed after a period of
inactivity.

Some of the biggest advantages of GUI systems flow
from the visual cues and reminders they provide of
“What's on offer here?” Interfaces can provide a struc-
tured, top-down way of encountering a new area (eg,
working with network data) with progressive revelation
guiding thinking through a problem via context-aware
choice sets. Thus, GUIs can provide serious new capabili-
ties quickly with reduced learning curves, with their
memory cues reducing the dependence on human mem-
ory [37]. Therefore, they are well placed for presenting
options for “How else can I look at that?” (display types),
and “How else can I do that?” (methods) with instant
delivery of results from each tentatively-entertained
option—leveraging the modern tendency of people, when
given buttons and choices, to ask “I wonder what that
does?” and just try things out. Not all GUI systems neces-
sarily use these capabilities well. But good GUI systems
are helpful for beginners, occasional users, and doing
one-off things really fast (provided the system prioritizes
them). They can enable users to see a whole range of
things we can do with our data and do them very quickly
and with very little effort. Furthermore, the clicking,
dragging and hovering gestures inherent in a well-
designed GUI can also create a level of immersion in data
which is quite different from the (often cold) remoteness
of coding systems. This is particularly powerful in the
hands of relative novices.

The biggest deficiency of GUIs is their inability to do
new things the system has not allowed for. The flexibility

S38 BURR ET AL.

https://jupyter.org/
https://rmarkdown.rstudio.com/

and extensibility that coding provides is probably the big-
gest reason we need to start students on their journeys
toward coding. There are many others. We have already
mentioned the automation of repetitive tasks. The ability
to reuse and share code, as-is or after modification, con-
fers huge time-efficiency and knowledge-transfer bene-
fits. This is really brought home by the “Oops! Do it
again!” experience: an involved analysis has to be
repeated because a mistake was discovered in the data.
Repeating all the previous work with a GUI is a big,
annoying job but it takes almost no time or effort when
using code. Sharing code also facilitates reproducibility—
the ability for someone else to reproduce (and therefore
check) an analyst's results. It automatically generates an
audit trail of what was done and how, and allows disci-
plined practices for working, sharing, version control, and
creating dynamic documents in which expository text is
interspersed with blocks of code that generate the desired
data-analysis outputs such as tables and graphs within a
report and can easily be recompiled if changes are
needed. Students can profitably experience quite a bit of
this, so the benefits of working using code are brought
home for them, but without any need to become experts.

Fergusson and Pfannkuch [15] discuss some fascinat-
ing research exploring some synergies between statistical
and computational thinking through the using of both
GUI software and code.

3.2.2 | System-generated code

GUIs and coding have complementary strengths, and stu-
dents may benefit from exposure to both. But there are
also GUI systems that can also write code, making avail-
able the code that implemented the actions that the
point-and-click interface requested. This code can be
taken away to be used elsewhere or modified and rerun
in the system. Perhaps the best known and most long-
standing example of this in the R ecosystem [30] is R
Commander [17] which is a graphic user interface for
R. Blue Sky Statistics (www.blueskystatistics.com),
Jamovi (www.jamovi.org/) and RKWard (https://rkward.
kde.org/) also have this ability; see [25] for comparisons.

The systems above appear to be aimed primarily at
data-analytic practitioners and their interests are not ped-
agogical. IntRo [21] is an R Shiny app produced for intro-
ductory statistics courses that makes available the R code
it uses to generate its results [20]. It is limited to the ana-
lyzes that have been most often used in standard intro-
ductory statistics, particularly in the United States, but is
also much simpler for beginners for that very reason.

Large parts of iNZight (https://inzight.nz/, [11,37,38]),
and also its online version iNZight Lite (https://lite.docker.

stat.auckland.ac.nz/), construct and make available R code.
The system takes user instructions from the GUI, constructs
R code to implement them, and then runs that code and
also stores it (automatically for anything that changes the
data, and otherwise by user request). Recently, in the inter-
ests of further facilitating strategies being discussed here,
iNZight's lead developer Tom Elliott has designed and
implemented the model exemplified in Figure 1.

In all of the windows most often used by beginners:

• The function call that produces the display just asked
for is shown - with provision for storing, or changing
and rerunning the code

• Settings in the GUI determine the function call and
the output

• Changing and rerunning a valid function call changes
the settings in the GUI to match the user's code (Reset
returns things to the last set of GUI instructions)

The strategies in play are:

• “the code that does it” is always in view to foster learn-
ing by osmosis

• The mappings between GUI settings, argument values
of the function call and output are direct, to foster see-
ing the relationships between them

• Because the system is responsive, each request in the
GUI for a minor change or customization triggers an
instant change both in the output and in the code, also
helping highlight what particular code elements do

• Opportunity is provided to experiment with the code
within a familiar environment with expected behaviors
and expected outputs

• Restricting what is always being shown to just the cur-
rent function call keeps things simple and makes the
mappings between code and GUI settings more obvi-
ous. (Other strategies are required for learning to
“string together” code.)

Currently code is stored automatically for all data-
wrangling operations performed, and when asked, for
graphics and statistical output produced by the base mod-
ule (including ggplot code) and the generalized-linear-
modeling module.

System-(or GUI-)generated code provides an alterna-
tive to instructor-provided code as a source of building
blocks for a program. Take data-wrangling operations as
an example: we would not expect students to become
experts at data-wrangling. Even if it was possible, the time
it would take would be completely out of proportion to
its value in the time available for an introduction to data
science. But we would at least like students to often expe-
rience using data wrangling operations necessitated by

BURR ET AL. S39

http://www.blueskystatistics.com
http://www.jamovi.org/
https://rkward.kde.org/
https://rkward.kde.org/
https://inzight.nz/
https://lite.docker.stat.auckland.ac.nz/
https://lite.docker.stat.auckland.ac.nz/

particular data sets they were working with as part of
repeatedly experiencing the whole data-science cycle.
The importance of working through the whole data
investigative process has been so long advocated and
established by statisticians and statistics educators that it
is dispiriting to think we still have to emphasize this.
However, now we have an extra dimension to this advo-
cacy, namely, that data wrangling and use of powerful
technology tools must be integral to authentic learning of
data investigations [27].

iNZight has the capacity to use dialogs to lead users
through almost all of the data-wrangling operations in the
book R for Data Science [35] and write the R code needed.
This means that when students need to employ particular
operations to wrangle their data in preparation for analysis,
the system and its documentation can lead them through
those operations, even with side-by-side pre- and post-views
of the data for the more complicated ones, and then provide
the code they need for their own program to automate a
larger process. Working this way contributes to understand-
ing operations and using them in a program. And it can be
done at the individual (rather than class) level. Students
can also process and analyze data using a GUI, obtain the

code for a program that duplicates everything they have just
done, and then modify that program to adapt it for a some-
what different purpose. Obviously, this can also be done
with pre-written dynamic documents (eg, R Markdown
notebooks; Jupyter notebooks), which students can take
and run in order to see functionality, and then later modify
for new data sets or new explorations.

We have seen no substantive pedagogical research on
using system-written, or teacher-provided code to help with
learning to code, just data analysts talking online about
how the code-writing provisions of R Commander (for
example) helped them to learn R. There is a need for
research not only into how code generated by existing sys-
tems can be used to enhance learning but also on the ways
code delivery and interaction in statistical and data-science
GUI systems can be structured to better help learners.

3.2.3 | Levels of coding

We will now elaborate on our distinction between higher-
level vs lower-level coding and why this distinction is
important. We will take a simple problem and approach it
using different levels of coding. Our focus is on the nature

FIGURE 1 Relationships between graphical user interface settings, code and output in iNZight [Colour figure can be viewed at

wileyonlinelibrary.com]

S40 BURR ET AL.

http://wileyonlinelibrary.com

of the code itself and what that code does, not the techno-
logical environment in which it is used.

Coding using tidyverse commands (www.tidyverse.
org, [34]) tends to be higher-level than programming
using base R commands which is lower-level in the fol-
lowing sense. The tidyverse contains collections of pow-
erful functions, built on top of base R commands. The
tidyverse commands are intended to make some very
important and commonly used operations much easier
for an analyst to perform, with less code and less atten-
tion to detail (bigger picture, more generality) than is
needed with base R commands where more detailed
instructions are required (lower-level coding).

This higher-vs-lower-levels-of-coding distinction is
important for strategizing about students' knowledge
and memory demands, and the avoidance of cognitive
overload (section 2.3.1). Take the problem of knowing
and remembering names. With code you cannot do
anything unless you know and remember the names of
the things you are trying to do, and the syntaxes used
in putting them together. Lower levels of coding
require more programming complexity and higher
demands on human knowledge and memory, thus
reducing broad accessibility to students.

Our brief illustrations start with the same small, clean
rectangular data set from a workforce survey read into a
dataframe called incomeData. The first six rows are:

Personid Gender Qualification Age Hours Income

Marital Ethnicity.

1 1 female school 15 4 87 never European

2 2 female vocational 40 42 596 married European

3 3 male none 38 40 497 married Maori

4 4 female vocational 34 8 299 never European

5 5 female school 45 16 301 married European

6 6 male degree 45 50 1614 married European

Very high-level code (in the sense that almost every-
thing about how things are done is decided by defaults)
This example uses functions from the iNZightPlots pack-
age [10] in R, cf. code window in Figure 1.

inzplot(Income, data=incomeData)

“Show me the data on the variable Income (using
a plot).”

inzplot(Income�Gender, data=incomeData)

“Show me the relationship between Income and Gender.”

inzsummary(Income�Gender, data=incomeData)

inzinference(Income�Gender, data=incomeData)

“Tell me more about this relationship using (i) the
summary statistics and (ii) the inferential information
that people usually want to see in a situation like this.”

How these commands are “obeyed” is automated
using defaults in the software (taking variable type into
account). The simplicity of code that does not expose
details makes it very easy to see how important things
can be changed; in this case it is easy to see how other
variables can be explored and what you would need to do
to use a different data set. This also provides a good
starting point for learning to read code as a narrative. R
is well suited to this as function arguments with defaults
need not appear in function calls.

In the above, there is no user control applied to
what happens and how. We can get more control by
overriding defaults and/or by moving to lower levels of
coding. We pay a price, of course, in complexity. By
adding arguments that override defaults, the calls
above (particularly the plotting calls) are also enor-
mously customizable, thus opening up a huge range of
opportunities for exploring the data using features such
as changing plot types, faceting, sizing and coloring
elements by other variables and labeling; all with little
programming complexity, for example,

iNZPlot(Income�Qualification j Gender,
plottype="gg_violin", data=incomeData)

With extremely high-level code like this, where small
pieces of code deliver rich information, students' first
experiences of direct interactions with code can associ-
ate it with power, not drudgery (they get rich graphics
and information with very little effort). This is very simi-
lar to the philosophy espoused by statisticians and statis-
tics educators over the past two decades [5], of the
importance of the first-day hook: get students up and
running with powerful, interactive data analysis as early
as functionally possible, so that the power overwhelms
the fear.

Intermediate code (in the sense that some decisions
about how things are done are decided by defaults, but the
user is expected to provide a little more guidance)

We lower the coding level slightly with this example
by using the mosaic package from Project MOSAIC [29]
to obtain similar output.

gf_boxplot(Income � Gender, data = incomeData)

favstats(Income � Gender, data = incomeData)

confint(t.test(Income � Gender, data = incomeData))

We now need to know a little bit more to issue our
instructions. Here, we now need to know that the type of
plot we want to see is called a boxplot, the name of the

BURR ET AL. S41

http://www.tidyverse.org
http://www.tidyverse.org

function that gives you that particular plot, and that for
our inferential information we want confidence intervals
from the t.test function (this last instruction is not actu-
ally mosaic).

Mosaic is an important package for learning journeys
in R. From its inception, it has prioritized enabling con-
sistent syntax, and easily readable code that conveys a
narrative, as a means of stripping away unhelpful compli-
cations from students' coding journeys.

Lower-level code (in the sense that fewer decisions
about how things are done are decided by defaults, and the
user is expected to almost fully guide the analysis)

Our final example lowers the code level further with
a call to ggplot2 [36] and some base R code to produce
summaries and inferential information that, for this par-
ticular combination of variable types, are almost the
same as produced by our highest level of code above.

ggplot(data = incomeData, aes(x = Gender, y =

Income)) +

geom_boxplot() +

geom_dotplot(binaxis = "y", dotsize = .5) +

coord_flip()

male_incomes <- incomeData$Income[incomeData$Gender

== “male”]
female_incomes <- incomeData$Income[incomeData

$Gender == “Female”]
c(summary(male_incomes), sd(male_incomes, na.rm =

TRUE))

c(summary(female_incomes), sd(female_incomes, na.rm

= TRUE))

t.test(male_incomes)$conf.int

t.test(female_incomes)$conf.int

t.test(Income � Gender, data = incomeData)

The core point we are trying to make here is that by
using sufficiently high-level functions we can reduce the
complexity of the code students have to work with
immensely, and consequently the cognitive and memory
demands put on them. This gives the opportunity to build
coding experience gradually without sacrificing speed of
progress through learning-from-data experiences even in
an entirely code-driven course. Topics encountered early
in the course sequence can be tackled with simple calls
to powerful high-level commands, while topics encoun-
tered later may be able to make more detailed and com-
plex coding demands as students accumulate experience
and confidence in working with code. Both ends of the
spectrum are illustrated in the case studies in section 4.

In computer programming terms, however, every-
thing we have shown above is actually still very high-
level programming. Hadley Wickham's ggplot is a very
high-level function with powerful abstractions which

facilitate building complex multi-part graphs in a princi-
pled way. Even R is itself a very high-level programming
language. What we have really been illustrating here are
just shadings of degree.

4 | CASE STUDIES ON LEARNING
COMPUTATION BY STEALTH

In section 3, we discussed how GUI-driven code can be
scaffolded to provide novice students with a starting
point which will be accessible to almost any computer
user. We then examined and defined different “levels” of
coding expertise, categorized primarily based on the
amount of support and lifting that the computer system
provides. Now, to illustrate this approach to computation,
we provide two case studies in how teachers and students
might engage with two topics: working with time series
data, and interactive data visualization. Each case starts
with consideration of a rich, multivariate data set, albeit
of different formats, to motivate the need for acquiring
new skills and to inspire students' desire to creatively
explore. For these topics, students will need sophisticated
computational ideas that are not traditionally taught at
the secondary school or introductory tertiary level. The
case studies illustrate how our approach to teaching com-
putational skills by stealth can make these topics accessi-
ble to all students. In addition, following section 3.2.3,
the two case studies use quite different coding levels, as a
demonstration of the fact that the depth of the material
and exploration does not need to be closely tied to the
coding level if the computational tools available allow for
high- or intermediate-level coding.

Our first case study works with seasonal time series
data. It takes a high-level approach easily accessible early
in a coding learning-journey. It uses very simple, high-
level function calls to the iNZightTS package [12] in
R. Because these are also the function calls that iNZight's
GUI-system itself issues and there are obvious mappings
between the code and settings in the GUI, the GUI and
code could even be used in parallel if so desired. This case
study was actually written to be a dynamic document
using R Markdown (https://rmarkdown.rstudio.com/),
and has been brought into this paper in its present form
for demonstration purposes—we envision that a class-
room setting might start with a templated markdown
framework showing a worked example, and then succes-
sively adapt that framework into something like what we
have here.

The second case study on interactive data visualiza-
tion, coming from a more computer science perspective,
takes a more intermediate- or low-level approach in the
sense that the coding experience is much more central to,

S42 BURR ET AL.

https://rmarkdown.rstudio.com/

and integrated with, the statistical experience. Similar to
the first case study, the data visualization work was origi-
nally created as a Jupyter notebook (https://jupyter.org/),
and a similar classroom vision applies. Please note we are
not arguing here that time series should be approached
one way and interactive visualization the other. Both can
be approached from anywhere on the spectrum between
GUI and low-level code, and we are simply illustrating
how two very different choices can play out.

4.1 | Case study: Climate over time in
Toronto

The educational context for this case study is learning to
investigate and learn from seasonal time-series data. The
real-world context is global warming (or “climate
change”), a topic of great interest to many young people.
Wherever you live on our planet, the climate of our
environment appears to be changing. NASA's Earth
Observatory program says “The world is getting warmer.
Whether the cause is human activity or natural variabil-
ity – and the preponderance of evidence says it's humans
– thermometer readings all around the world have risen
steadily since the beginning of the Industrial Revolution
… the average global temperature on Earth has increased
by about 0.8� Celsius (1.4� Fahrenheit) since 1880. Two-
thirds of the warming has occurred since 1975, at a rate
of roughly 0.15–0.20�C per decade.”

Case study: Given that we consider “local”
to mean Ontario, Canada (as four of the
authors of this paper live there!), (1) Can we
observe a warming trend in the data from
Toronto, Ontario, Canada?; and (2) What
prediction can we make about average tem-
peratures in the near future?

We will explore some temperature data from Environ-
ment and Climate Change Canada which are time
series: repeated observations of the same unit or mea-
surement over time. ECCC maintains hourly

observations of temperature at many locations across
Canada which are freely available on a data portal at
http://climate.weather.gc.ca/. Similar databases exist for
other countries such as Australia, New Zealand, the
United States of America and the United Kingdom as
well as most other countries on Earth.

A primary motivator for developing a computer pro-
gram for this situation (and almost all time series data) is
the fact that new data are always accumulating as time
marches on, so we are very likely to want to update any
analysis we do sometime in the future to include all the
new data. Our process is to first obtain the data from
the database, then wrangle it to get it into a form that the
R package we want to use likes as input, and then start
analyzing it.

The database allows us to extract hourly, daily or
monthly data. We will take monthly data. We get a rect-
angular data set with the variables/fields shown in
Figure 2 if we request data for Toronto's Pearson Interna-
tional Airport.

There are fields that are redundant for this analysis
because they are characteristics of Pearson Airport and
never change, for example, latitude and longitude. There
are others that we do not need such as “Mean Temp
Flag” which takes the value “M” if the value of “Mean
Temperature” is missing, and is blank otherwise; a little
investigation reveals there are no missing data from 1970
(actually after 1937). And we may also narrow our focus
to a smaller number of variables of particular interest. So
we want a wrangling step to reduce the number of vari-
ables being considered to a smaller number of variables
of particular interest.

When the data are imported, R does not like spe-
cial characters in variable names; for example, “Extr
Min Temp (�C)” is automatically converted to “Extr
Min Temp..C.” So another desirable wrangling step
is to change the variable names after import to sim-
pler, more attractively-readable names. Additionally,
the R package iNZightTS [11] we will use for our
time series analysis in this case study does not auto-
matically recognize year-month data in the form
“1971-02,” but it does automatically recognize

FIGURE 2 All fields available from ECCC for climate data from Pearson International Airport, in the format presented when

downloaded from the portal mentioned

BURR ET AL. S43

https://jupyter.org/
http://climate.weather.gc.ca/

“1971M02” so we want to change the format used by
the Date/Time variable (which turns to “Date.Time”
on import). Note that the units (degrees Celsius,
kilometers per hour) are compressed by this change,
and labels will need to be manually updated in the
following (eg, for figures).

Once we have wrangled our data we have a data set
in a tidy form [33] ready for initial analysis. But when we
come to update the analysis with new data we would not
want to do all this again. If we had a program that does
all the steps, and we wanted to update the analysis we
would only have to re-run the program. Coming up with
the code to do these things will be either beyond most

FIGURE 3 Display of the available variables after cleaning and tidying the data, and an introductory graphical analysis of the mean

temperature series, from 1970 to 2019 [Colour figure can be viewed at wileyonlinelibrary.com]

S44 BURR ET AL.

http://wileyonlinelibrary.com

students or take a long time to arrive at, and is beyond
the scope of an introductory course. Additionally, differ-
ent data sets require different sets of wrangling steps
(from minimal to excessive). Adapting the opening sen-
tence of Tolstoy's Anna Karenina (about families), all tidy
data is alike but every untidy data set is untidy in its own
way. So in this context, teacher input to wrangling-code
formation will normally be required. Alternatively
system-written code could be helpful.

Once we are in the tidy world, with variables orga-
nized, everything is much better systematized. In what
follows we emphasize the connection between com-
mands and what they produce, regardless of the pro-
gramming environment. In Figures 3 and 4 the bolded
lines are lines of computer code (commands), while the
plain text lines and plots that follow are the computer
output produced in response to these commands.

Figure 4 shows that the seasonal movements (month
of the year effects) in the mean temperatures are much
larger than any movement in the trend (as we would
have expected). Showing the seasonal differences restricts

the depiction of movement in the overall trend to a very
small interval of vertical space on the graph, thus making
it much harder to see what is happening to the trend. So
next we aggregate our data to yearly averages and plot
that (see Figure 5).

In Figure 5 a warming effect is now much more obvi-
ous. Mean annual temperatures at Toronto Airport
appear to have climbed fairly steadily from 1970 to
around the year 2000 but seem to have leveled off since.

Other variables in the data show contrasting behav-
ior, for example, total precipitation and maximum win-
dspeed have very weak seasonal effects and do not show
any consistent pattern of increase or decrease over the
time period.

Note that we are using this example to illustrate a
high-level computation approach by stealth, but do not
comment here on required prior learning or on what cur-
ricula topics are needed.

Although we have just shown a minimalist computa-
tional-approach to time series here, time series data is a nat-
ural fit as a vector for computation by stealth since so much

FIGURE 4 Forecasting mean monthly temperatures for the next 3 years (36 months) [Colour figure can be viewed at

wileyonlinelibrary.com]

BURR ET AL. S45

http://wileyonlinelibrary.com

of available real-world data is actually recorded as time
series, and time series come with fascinating structural
behavior that can be visible directly from plots. Thus, going
back to our earlier point about motivation: if teachers wish
to encourage student-driven learning via motivated investi-
gations, they will almost certainly encounter time series
data as the natural fit for their question-driven inquiry, all-
owing students to feel powerful as they “detective” their
way through an investigation. Further, time series naturally
come with a date-time structure, which almost requires code
to be easily wrangled: encouraging the cleaning of dates
and times is a great hook to get students interested in
repeatable, reproducible analysis-focused code.

The types of plot shown above, together with decom-
position plots and plots of multiple series, have been the
mainstay of teaching, data exploration and assessment
for time series at the last-year of high school in
New Zealand since 2013. (In New Zealand, the majority
of students entering their last year of school study statis-
tics.) The educational experience is centered on using
graphs of data to make sense of the world and the stu-
dents typically use GUI systems [4]. High-stakes assess-
ments call for written reports on what the student has
learned from a particular set of data.

4.2 | Case study: Interactive data
visualization

Many modern data sets are highly multivariate, meaning
items in the data set have many attributes, and these

attributes can be quantitative or categorical. Many such
data sets are represented in a tabular format in a standard
relational database. Examples include the features of a
computer (speed, storage, price, screen resolution), the
characteristics of a movie (length, box office sales, date of
release, genre) or information about athletes' performance
(name, sex, age, height, weight, year, sport, medal). While
tables are a helpful way to organize and sort data, discov-
ering relationships between attributes using a table or a
collection of tables can be challenging. Appropriate visual-
izations of such data can help identify patterns or form
hypotheses [3,13]. However, because of the sheer number
of attributes, it is not trivial to determine which particular
visual representations of high-dimensional data sets best
support decision making or variable selection for model
building.

This case study gives an approach for interactive data
visualization by stealth through a learning sequence. It
assumes the data set is complete and does not have signifi-
cant errors, as dealing with data cleaning and missing data
is a different problem. There is a plethora of open multivari-
ate data sets that are readily available online, and teachers
can also engage students in producing a data set of their
own through simple data collection methods involving
sensing technology, surveys, or even directly scraping data
from webpages where allowed, or through APIs. This
allows for endless possibilities in terms of the themes and
problems that students can perform data analysis on, to fos-
ter motivation. Most importantly, in demonstrating to stu-
dents, teachers should focus on a data problem that is
relatable to the students, for which the answer is not trivial,

FIGURE 5 Mean yearly temperatures (in degrees Celsius) at Toronto Pearson International Airport, 1970 to 2019

S46 BURR ET AL.

and for which the data set is rich and complex enough to
pose interesting data analysis and visualization challenges.

Case study: Your parents are considering
purchasing a new computer for the family.
You have done some research and found a
spreadsheet of about 6000 models to con-
sider, including the price, processor speed,
hard drive size, RAM, graphics capabilities,
brand reputation, and warranty. Can you
trim down this list to retain 5 top options
based on the computer properties? Which
properties will you choose to focus on? How
can you then effectively communicate to
your parents why you have chosen these
options, as compared to any other choices
from the initial list?

The data set used in this case is large both in terms of
the number of items (n) and dimensions (p) to consider,
making it virtually impossible to process the data manu-
ally. Note that teachers could also easily adapt this case
to identifying a subset of points of interest in any multi-
variate data set and situating these items with regards to
the larger collection (eg, What are the best cities to travel
to? What book should I read next? What are the most
endangered species in North America? What are the
highest ranked colleges? What makes an exceptional ath-
lete exceptional?).

Note that this case study is not an example of a data
investigation but is focusing on producing some visuali-
zations useful in exploring and presenting aspects of a
large dataset. Criteria have not been set for choices, there
is no randomness in the data, no inferences to be made,
and no modeling to be done. It is an example of some

useful visualizations for a large dataset with a large num-
ber of attributes (variables). By choosing to explore a
large fixed non-random data set, we can focus on learn-
ing visualization choices by stealth in a context familiar
to students without any considerations needed to be
given to all the issues and complications of a statistical
data investigation.

The first useful activity with the computer data set in
this case study could be to create single charts using com-
mercial GUI-driven visualization technology, such as
Tableau, PowerBI, or even Excel to explore different
facets of the dataset. For example, the students could
examine the relationship between price and processor
speed using a 2D scatterplot. Given the complex relations
between the attributes of the data set, and the number of
items, it quickly becomes apparent that examining the
data from one point of view at a time does not give a
clear picture of the options.

The next activity could be to create coordinated views
of the data, sometimes called a dashboard. These
views can be interactively linked to reveal the same data
item across plots, or to highlight items matching a selec-
tion on any given plot. For example, a scatterplot of price
and processor speed can be interactively linked to a histo-
gram of the number of computers in each bin of RAM
(see the left sub-plot in Figure 6 for the histogram) to
allow for interactive highlighting of points in each RAM
group. This activity builds the ability of students to
explore data from multiple perspectives, seeing that a
data item (a computer in this case) can be viewed in dif-
ferent ways based on a question of interest. Software such
as Tableau and PowerBI offer the capability to create
these dashboards easily. Because there are virtually an
infinite number of ways to design a single dashboard,
learners will be faced with the question of what

FIGURE 6 Histogram displaying the number of computer models binned, and a radar chart of the features of the five selected

computers, developed using Observable notebooks [Colour figure can be viewed at wileyonlinelibrary.com]

BURR ET AL. S47

http://wileyonlinelibrary.com

particular set of views they wish to integrate to their own
dashboard. This is a good spot for initiating a discussion
about goals and tasks, and how visualization supports
these, allowing students to be confronted with the need
to document their reasoning processes that led to particu-
lar choices. At this point, the instructor should discuss
the tradeoffs of given dashboards, and the fact that a
dashboard that excels at supporting certain tasks will
inevitably be less good at supporting some other tasks.
An important lesson learned through this activity is that
visualization design involves making compromises, and
that different solutions can be equally valid, depending
on where priorities are set.

Dashboards and coordinate views are powerful mem-
bers of the world of exploratory data analysis methods,
with dynamic query, selection, filtering and observation.
However, communicating results which are dependent
on dynamic choices can be difficult. The communication
of data insights requires the user to curate one or a collec-
tion of visual representations of the data that best illus-
trate the information in the data, often also accompanied
with explanations in writing that make it clear to the
intended audience what the important information
is. Thus, having explored the possible presentations via
Tableau, we could then create a short dynamic document
(for the students' hypothetical parents) comparing the
properties of their selection options for a new computer,
so that the pros and cons of each can be communicated,
with the dynamic nature of the visualizations empha-
sized. We lead students to one useful chart which is

somewhat interpretable: a radar chart, comparing multi-
ple attributes in a helpful way (see the right sub-plot in
Figure 6). This figure can be interpreted to compare and
contrast their selected options, as support for their short
report.

We have now completed one iteration of exploration,
developing several visualizations and sub-setting the
dimensions down to useful attributes. The next step is to
develop alternative visualizations, to further illustrate
that the same data can be presented in different ways,
revealing (and hiding) details equally. An example of
what might be useful is to encode the data in a different
way, for example, using a parallel coordinates plot. The
radar chart (Figure 6) creates a “shape” for each com-
puter in the data set which can be compared, while paral-
lel coordinates plots (Figure 7) more clearly illustrate
which item is at the top or bottom for each characteristic
(or attribute, or feature).

Having built visualizations and created a rough
report, we can then manipulate these frameworks, apply-
ing changes to color models, rendering schemes, and
scaling functions. Lines, axes, and fills can be changed in
the radar chart, inspiring students' creativity and encour-
aging them in the pursuit of understood visualizations,
while still keeping the bulk of the implementation details
reserved. In addition, labels, and legends should be added
as appropriate.

This activity progresses students' ability to interpret
existing code as a sequence of instructions to process and
create a visualization from the data given as input to

FIGURE 7 Parallel coordinates plot showing the characteristics of all five selected computers [Colour figure can be viewed at

wileyonlinelibrary.com]

S48 BURR ET AL.

http://wileyonlinelibrary.com

these functions and develop their ability to refer to the
documentation of functions to identify what each func-
tion does, and what are each of its parameters. Our goal
is to emphasize that, besides the actual data set that is
given as an input, a function often encompasses other
input parameters that allow them to customize a more
general concept, as for instance, “plot.”

We now suppose that our “client,” our parents,
respond (regardless of completeness of exploration from
each individual student) that they are concerned that we
have selected expensive computers based on brand rather
than making a balanced choice across capabilities and
price. In other words, the client wants more work. To
counter this, we could situate the selected options within
the larger picture of the broad data set.

We could add a distribution of attribute values across
the complete data set using a set of histograms, one for
each variable, repurposing code by splicing together code
snippets from other types of charts, such as the histo-
grams already present in the same workbook. The aim is
to show that the price is reasonable while achieving high
values on the selected target attributes. For this we calcu-
late derived measures from the values. The new view
annotates the percentiles (including the median) of each
attribute, and is demonstrated through adding standard
interactions: items selected on the radar chart will be
highlighted in the summary histograms; bars in the dis-
tribution will select filter ranges on the radar chart. An
example of this annotation is shown in Figure 8, locating
five computer models on the overall histogram of price.

Returning to the report aspect, we would finish our
report by completing explanatory text blocks to help the

rationale of our explorations and selected visualizations,
aimed at explaining to the clients (parents) how the
exploration works, and how it can be manipulated
dynamically (as it is not static!).

5 | CONCLUSION

In 2010 as one of the dimensions to ensuring continued
and broader impact of statistical sciences, Nolan and Tem-
ple Lang [27] called for statistics educators to expand the
use of computation in statistics curricula at all levels. They
identified three key components to the integration of com-
puting more broadly in statistics: (a) broaden statistical
computing; (b) deepen computational reasoning and liter-
acy; and (c) compute with data in the practice of statistics.
Ten years on, the popularization of data science, and the
corresponding need for more integration of computing and
statistics in the pursuit of learning from data has brought
focus and urgency to this call, and gave impetus for data sci-
ence, including these components, to be brought to more
students and to start earlier than post-secondary school. Sta-
tistical computing is necessary and can no longer be ignored
for any reasonable approach to learning from data, and sta-
tistical thinking and computational literacy need to be par-
tnered in all educational efforts to develop reasoning from
data. The IDSSP curriculum frameworks have all been
designed with (a) and (b) as implicit goals in an approach
that allows development of curricula in, and foundations
for, learning data science to be accessible at senior school
and introductory tertiary levels to a wide range of students.
All aspects of the IDSSP frameworks are designed with the

FIGURE 8 An improved histogram displaying the number of computer models binned, customized to contextualize the price of the five

selected models compared to the whole collection of computer models [Colour figure can be viewed at wileyonlinelibrary.com]

BURR ET AL. S49

http://wileyonlinelibrary.com

motivation of gaining skill in learning from data, in the
structure of the cycle of data investigations, including for-
mulating a problem, acquiring, exploring and analyzing the
data, and communicating the results. For most areas exis-
ting software should suffice; for others new software may
need to be written to ensure sufficient accessibility. But we
believe this is all perfectly doable using the software tools
we already have (eg, in the R and Python ecosystems) and
adapting software models already in existence (including
notebooks and IDEs).

The type and extent of use of technology in learning
statistics at both school and tertiary levels has been a
challenge for at least 30 years, not least because of the
speed of technological development in the practice of
statistics together with the rapid expansion of the world
of learning from data to encompass more disciplines
and increasingly complex data sets and contexts. Curric-
ulum frameworks must now consider the explicit inclu-
sion of computation from almost the very start. The
IDSSP frameworks contribute to this by bringing
together statisticians and computer scientists in out-
lining paths for how we might integrate these compo-
nents in a soundly foundational way in secondary
school or introductory tertiary for a broad range of stu-
dents. As long advocated in developing statistical think-
ing, interesting data sets in a variety of areas can engage
the students and motivate them to learn technical mate-
rial when needed, with need-driven learning leading to
students obtaining technical and computational skills
“just in time,” as their motivation and interest leads
them to understand and communicate the information
that can be learned from the data.

The advent of interactive visualization tools and liter-
ate programming frameworks has the potential to change
the restriction of “writing code” being a gatekeeper, and
allow students with varying experiences and diverse inter-
ests to engage in and be able to do basic data science. This
is fundamentally a question of accessibility, and our hope
is that teaching computational skills through stealth will
allow greater access to students from a broad range of
backgrounds and interests. Encouraging agency in
learners has tremendously compounded benefits
in engagement and retention, and ensuring breadth in the
academic skill, background and interest of data science
students will encourage the growth of the data-driven
questioning framework in disparate fields, and eventually,
if perpetuated, across all of society. Long-term, this inclu-
sivity may also help our professions tackle fundamental
questions like algorithmic bias which are presenting them-
selves in our modern, data-driven economy.

Integration of statistical and computational skills
requires scaffolding for both. Much work has been done
over many decades in teaching statistical thinking and

data investigations, with accompanying educational
research. Here, we advocate that computation be treated
as a scaffolded, introduction-via-stealth activity, in order
to achieve the integration of statistical and computational
skills which are at the heart of statistics and data science.
We intentionally refrain from stating “a right way to do
computation.” Quite different approaches can be used to
achieve very similar ends, and suit different teachers and
different types of students. We have touched on some
possible computational approaches in this paper. But
whatever computational approaches are chosen, the
desired ends cannot be met unless the students being tau-
ght find their computational experiences unthreatening,
interesting, empowering and enjoyable.

ORCID
Wesley Burr https://orcid.org/0000-0002-2058-1899
Christopher Collins https://orcid.org/0000-0002-4520-
7000
Alison L Gibbs https://orcid.org/0000-0002-0408-3435
Chris J Wild https://orcid.org/0000-0003-0115-6448

REFERENCES
1. S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and

M. K. Norman, How Learning Works: Seven Research-Based
Principles for Smart Teaching, Wiley, San Francisco, CA, 2010.

2. American Statistical Association Undergraduate Guidelines
Workgroup (2014), Curriculum Guidelines for Undergraduate
Programs in Statistical Science, http://www.amstat.org/asa/
files/pdfs/EDU-guidelines2014-11-15.pdf.

3. F. J. Anscombe, Graphs in statistical analysis, Am Stat 27
(1973), 17–21. https://doi.org/10.1080/00031305.1973.10478966.

4. Census at School NZ. (2020), Investigate time series data,
https://new.censusatschool.org.nz/resources/3-8/.

5. M. Çetinkaya-Rundel and V. Ellison, A fresh look at introduc-
tory data science, J Stat Data Sci Educ 29 (2021), S16–S26.
https://doi.org/10.1080/10691898.2020.1804497.

6. C. Connolly, E. Murphy, and S. Moore, Programming anxiety
amongst computing students—a key in the retention debate?
IEEE Trans Educ 52 (2009), 52–56. https://doi.org/10.1109/TE.
2008.917193.

7. N. Cowan, Processing limits of selective attention and working
memory: potential implications for interpreting, Interpreting 5
(2000), 117–146. https://doi.org/10.1075/intp.5.2.05cow.

8. N. Cowan, The magical number 4 in short-term memory: a
reconsideration of mental storage capacity, Behav Brain Sci 24
(2001), 87–114. https://doi.org/10.1017/S0140525X01003922.

9. D. Donoho, 50 years of data science, J Comput Graph Stat 26
(4) (2017), 745–766. https://doi.org/10.1080/10618600.2017.
1384734.

10. Elliott T, Soh YH, Barnett D. iNZightPlots: graphical tools for
exploring data with iNZight. R package version 2.13; 2021,
https://CRAN.R-project.org/package=iNZightPlots.

11. Elliott T, Wild C, Barnett D, Sporle A. iNZight: A Graphical
User Interface for Data Visualisation and Analysis through R;
2021 https://inzight.nz/papers/2021_jss.pdf.

S50 BURR ET AL.

https://orcid.org/0000-0002-2058-1899
https://orcid.org/0000-0002-2058-1899
https://orcid.org/0000-0002-4520-7000
https://orcid.org/0000-0002-4520-7000
https://orcid.org/0000-0002-4520-7000
https://orcid.org/0000-0002-0408-3435
https://orcid.org/0000-0002-0408-3435
https://orcid.org/0000-0003-0115-6448
https://orcid.org/0000-0003-0115-6448
http://www.amstat.org/asa/files/pdfs/EDU-guidelines2014-11-15.pdf
http://www.amstat.org/asa/files/pdfs/EDU-guidelines2014-11-15.pdf
https://doi.org/10.1080/00031305.1973.10478966
https://new.censusatschool.org.nz/resources/3-8/
https://doi.org/10.1080/10691898.2020.1804497
https://doi.org/10.1109/TE.2008.917193
https://doi.org/10.1109/TE.2008.917193
https://doi.org/10.1075/intp.5.2.05cow
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1080/10618600.2017.1384734
https://cran.r-project.org/package=iNZightPlots
https://inzight.nz/papers/2021_jss.pdf

12. Elliott T, Zeng J, Potter S, Banks D, Kuper M, Zhang D.
iNZightTS: Time series for 'iNZight'. R package version 1.5.7;
2020. https://CRAN.R-project.org/package=iNZightTS.

13. J. D. Fekete, J. J. Van Wijk, J. T. Stasko, and C. North, The
value of information visualization, in Information Visualization,
Vol 4950, A. Kerren, J. T. Stasko, J. D. Fekete, and C. North,
Eds., Springer, Berlin, Heidelberg, 2008, 1–18.

14. Fergusson A. Popularity contest [Blog post]; 2020. https://
askgoodquestions.blog/2020/08/17/59-popularity-contest/.

15. A. Fergusson and M. Pfannkuch, Introducing teachers who use
GUI-driven tools for the randomization test to code-driven tools,
Math Think Learn (2021). https://doi.org/10.1080/10986065.
2021.1922856.

16. A. Fergusson and C. J. Wild, On traversing the data landscape:
Introducing APIs to data-science students, Teach Stat 43 (2021),
S71–S83. SI1. DOI: 10.1111/test.12266

17. J. Fox, Using the R Commander: A Point-and-Click Interface for
R, Chapman and Hall, New York, 2017.

18. E. W. Gibson, Leadership in Statistics: increasing our value and
visibility, Am Stat 73(2) (2019), 109–116. https://doi.org/10.
1080/00031305.2017.1336484.

19. A. Gunn, Embedding quantitative methods by stealth in polit-
ical science: developing a pedagogy for psephology, Teach
Public Admin 35 (2017), 301–320. https://doi.org/10.1177/
0144739417708838.

20. E. Hare and A. Kaplan, Designing modular software: a case
study in introductory statistics, J Comput Graph Stat 26 (2017),
493–500. https://doi.org/10.1080/10618600.2016.1276839.

21. Hare E, Kaplan A. intRo: Shiny-based statistics learning appli-
cation; 2019, https://github.com/gammarama/intRo.

22. IDSSP Curriculum Team. Curriculum Frameworks for
Introductory Data Science; 2019, http://idssp.org/files/
IDSSP_Frameworks_1.0.pdf

23. D. E. Knuth, Literate programming, Comput J 27 (1984), 97–
111. https://doi.org/10.1093/comjnl/27.2.97.

24. S. Luttenberger, S. Wimmer, and M. Paechter, Spotlight on
math anxiety, Psychol Res Behav Manag 11 (2018), 311–322.
https://doi.org/10.2147/PRBM.S141421.

25. Muenchen RA. R Graphical User Interface Comparison; 2020,
http://r4stats.com/articles/software-reviews/r-gui-comparison/,
Accessed June 25, 2020.

26. National Academies of Sciences, Engineering, and Medicine,
How People Learn II: Learners, Contexts, and Cultures, The
National Academies Press, Washington, DC, 2018. https://doi.
org/10.17226/24783.

27. D. Nolan and D. Temple Lang, Computing in the statistics curricula,
Am Stat 64 (2010), 97–107. https://doi.org/10.1198/tast.2010.09132.

28. C. Primi and F. Chiesi, The role of mathematics anxiety and sta-
tistics anxiety in learning statistics, in Looking Back, Looking

Forward. Proceedings of the Tenth International Conference on
Teaching Statistics (ICOTS10, July, 2018), M. A. Sorto, A.
White, and L. Guyot, Eds., International Statistical Institute,
Kyoto, Japan, 2018.

29. R. Pruim, D. Kaplan, and N. Horton, The mosaic package: Help-
ing students to think with data using R, R J 9 (2017), 77–102.
https://doi.org/10.32614/RJ-2017-024.

30. R Core Team, R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna,
Austria, 2020 https://www.R-project.org/.

31. L. A. Sharp, Stealth learning: unexpected learning opportunities
through games, J Instruct Res 1 (2012), 42–48.

32. Shreve, J. (2005), Let the Games Begin. Video Games, Once
Confiscated in Class, Are Now a Key Teaching Tool If They're
Done Right, George Lucas Educational Foundation. https://
www.edutopia.org/video-games-classroom.

33. H. Wickham, Tidy data, J Stat Softw 59(10) (2014), 1–23.
https://doi.org/10.18637/jss.v059.i10.

34. Wickham H. Tidyverse: easily install and load the 'Tidyverse', R
Package version; 2019 https://CRAN.R-project.org/package=
tidyverse.

35. H. Wickham and G. Grolemund, R for Data Science: import,
tidy, transform, visualize, and model data, O'Reilly Media,
Sebastopol, California, 2016. https://r4ds.had.co.nz/.

36. H. Wickham, ggplot2: Elegant Graphics for Data Analysis,
Springer-Verlag, New York, 2016.

37. C. J. Wild, T. Elliott, and A. Sporle, On democratizing data sci-
ence: some iNZights into empowering the many, Harvard Data
Sci Rev 3(2) (2021). https://hdsr.mitpress.mit.edu/pub/8fxt1
zop/release/1.

38. C. J. Wild and J. Ridgway, Civic Statistics and iNZight; illustrations
of some design principles for educational software, in Statistics for
Empowerment and Social Engagement – Teaching Civic Statistics to
Develop Informed Citizens, J. Ridgway, Ed., Springer, Berlin, 2021.

39. K. Yevseyeva and M. Towhidnejad, Work in Progress: Teaching
Computational Thinking in Middle and High School, Proc Front
Educ Conf (2012). 1–2. https://doi.org/10.1109/FIE.2012.6462487.

How to cite this article: W. Burr, F. Chevalier,
C. Collins, A. L. Gibbs, R. Ng, and C. J. Wild,
Computational skills by stealth in introductory data
science teaching, Teaching Statistics 43 (2021),
S34–S51. https://doi.org/10.1111/test.12277

BURR ET AL. S51

https://cran.r-project.org/package=iNZightTS
https://askgoodquestions.blog/2020/08/17/59-popularity-contest/
https://askgoodquestions.blog/2020/08/17/59-popularity-contest/
https://doi.org/10.1080/10986065.2021.1922856
https://doi.org/10.1080/10986065.2021.1922856
https://doi.org/10.1080/00031305.2017.1336484
https://doi.org/10.1080/00031305.2017.1336484
https://doi.org/10.1177/0144739417708838
https://doi.org/10.1177/0144739417708838
https://doi.org/10.1080/10618600.2016.1276839
https://github.com/gammarama/intRo
http://idssp.org/files/IDSSP_Frameworks_1.0.pdf
http://idssp.org/files/IDSSP_Frameworks_1.0.pdf
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.2147/PRBM.S141421
http://r4stats.com/articles/software-reviews/r-gui-comparison/
https://doi.org/10.17226/24783
https://doi.org/10.17226/24783
https://doi.org/10.1198/tast.2010.09132
https://doi.org/10.32614/RJ-2017-024
https://www.r-project.org/
https://www.edutopia.org/video-games-classroom
https://www.edutopia.org/video-games-classroom
https://doi.org/10.18637/jss.v059.i10
https://cran.r-project.org/package=tidyverse
https://cran.r-project.org/package=tidyverse
https://r4ds.had.co.nz/
https://hdsr.mitpress.mit.edu/pub/8fxt1zop/release/1
https://hdsr.mitpress.mit.edu/pub/8fxt1zop/release/1
https://doi.org/10.1109/FIE.2012.6462487
https://doi.org/10.1111/test.12277

	Computational skills by stealth in introductory data science teaching
	1 INTRODUCTION
	2 CONTEXT AND MOTIVATION
	2.1 Foundational data science and IDSSP
	2.2 A Stealth Approach to Computation

	3 BUILDING COMPUTATIONAL SKILLS
	3.1 Accessibility and goals for computation
	3.2 Exemplar pathways for coding growth
	3.2.1 GUIs as a vehicle for growth
	3.2.2 System-generated code
	3.2.3 Levels of coding

	4 CASE STUDIES ON LEARNING COMPUTATION BY STEALTH
	4.1 Case study: Climate over time in Toronto
	4.2 Case study: Interactive data visualization

	5 CONCLUSION
	REFERENCES

