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Fig. 1. Left: Multiple entity selection showing parts that failed along with wiper and window components. Middle: Exploring issues
in the front of the vehicle. Right: A potential usage scenario for building maintenance.

Abstract— We present a novel approach to text visualization called descriptive non-photorealistic rendering which exploits the inherent
spatial and abstract dimensions in text documents to integrate 3D non-photorealistic rendering with information visualization. The
visualization encodes text data onto 3D models, emphasizing the relative significance of words in the text and the physical, real-world
relationships between those words. Analytic exploration is supported through a collection of interactive widgets and direct multitouch
interaction with the 3D models. We applied our method to analyze a collection of vehicle complaint reports from National Highway
Traffic Safety Administration (NHTSA), and through a qualitative evaluation study, we demonstrate how our system can support
tasks such as comparing the reliability of different makes and models, finding interesting facts, and revealing possible causal relations
between car parts.

Index Terms—Integrating Spatial and Non-Spatial Data, Text Visualization, Non-photorealistic Rendering.

1 Introduction

There is an ever-increasing number of document collections concern-
ing physical entities, objects we can relate to in our daily lives. Busi-
ness intelligence applications rely on automatic summarization of such
collections for tasks such as tracking customer comments about a
product or service. The most common approach to visual summariza-
tion, the word cloud (e.g., [25]), renders words in an abstract array, out
of context and without considering the meanings of the words. How-
ever, many nouns have easily discovered semantic relationships, such
as meronymy or the part-of relation. Using a database of meronyms,
it is possible to extract and relate keywords from documents based on
their part-whole relationship. In this work, we focus on meronyms
which have an inherent spatial relationship; that is, they are parts of a
physical whole. For example, “handle” is a part of “toaster,” located
on the front, and “exhaust” is part of “car,” located on the underside.

The major contribution of this paper is a new approach to text ana-
lytics which we call descriptive non-photorealistic rendering (d-NPR).
Inspired by calls for closer integration of Scientific Visualization and
Information Visualization [13, 14], we investigate a hybrid approach
for text analytics by presenting both abstract and spatial semantics in
a single view, thus creating an engaging visualization that has roots
in the real world. Our approach consists of the analysis of descriptive
texts, using a lexical database, to extract mentions of physical entities
and compute their occurrence and co-occurrence scores. We encode
the results onto segmented 3D models that correspond to the men-
tioned objects. Our rendering process creates information-rich visu-
als such that significant parts of the model appear to “pop-out” to the
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viewers, while retaining their easily recognizable shapes and forms.
Interactive widgets are linked to the visualization and help analysts
navigate the 3D visualization space, as well as discover trends and
other interesting patterns in the data.

To demonstrate our method within a realistic analytic scenario, we
applied our techniques to analyze a text corpus of 600,000 vehicle
complaints from the US National Highway Traffic Safety Administra-
tion (NHTSA). Our intention is to help consumers make better, more
informed choices when they purchase a vehicle. In order to find out
how people respond to the visualization approach, we conducted an
evaluation study with 12 participants. In particular we assess their ac-
curacy and how they perform open-ended analytical tasks.

2 Related Work

This work is informed by past research which falls primarily into two
categories. We first describe works that deal with scene construction
based on text data, we then walk through focus + context techniques
and discuss how they are related to our visualization design.

2.1 Descriptive Illustration

Descriptive illustration is a sub-field of rendering focused on gener-
ating static illustrations or animated sequences based on text input.
Unlike other text visualizations with abstract outputs, descriptive vi-
sualization is concerned with a literal representation of the text.

WordsEye [9] demonstrates one of the more fully-realized text-to-
scene generation systems. It uses a combination of grammatical rules
and heuristics, along with a large repository of 3D models to render an
image which represents the literal meaning of the text. WordsEye is re-
stricted to short descriptive sentences composed of adjectives, nouns
and spatial prepositions which relate them, e.g.“The tawny cat is on
the red couch.” CarSim [19] uses a similar logical model and ren-
dering process, but deals with animated scenes for reconstructing car
crashes from incident reports. These approaches contrast with text vi-
sualizations which use aesthetic arrangements of word forms to reveal
content (e.g.[15, 25, 28]). These systems render an array of words
using random packing or by fitting them into pre-determined geomet-



Fig. 2. A subset of the component keywords hierarchy. Words in square
brackets are synonyms. The components in this hierarchy were isolated
in the 3D model of a car, and extracted from the text data and counted.

ric shapes designed to be semantically meaningful, such as rendering
words about flowers into the shape of a blossom.

Our application differs in that we aim for an interpretive view which
summarizes common nouns in a collection of text, rather than deeply
processing short sentences to construct representable logical forms.
The spatial positions in our system are not determined by the prepo-
sitions in the text, but rather determined by their inherent positions as
part of the 3D model which serves as the substrate of our visualization.

Another related area of descriptive rendering is systems which al-
ready have a defined scene geometry and use input data to modify how
a scene is rendered. For example, IBIS is one of the first systems to
use dynamic rendering based on user-specified input [22]. IBIS parses
a set of text-based rules to determine the optimal perspective and light-
ing parameters that satisfy them. More recently, Sedlmair et al. aug-
mented a system that visualizes communication among vehicle com-
ponents with a 3D model of the vehicle itself, using the model to show
the communication paths [21]. Our work is related in that we augment
a non-photorealistic rendering of a car to emphasize important regions,
however our visualization is driven by unstructured text data and we
provide for direct interaction on the 3D visualization itself.

2.2 Focus + Context

Focus + Context is a well-known technique used to draw attention to
areas of interest while maintaining visibility of contextual informa-
tion. There are various ways to discriminate these areas, for example
Hauser [13] reviews a general approach in which the use of colour,
space, opacity and other resources are demonstrated.

A lens widget can be considered a focus + context technique that
maps to a real-world metaphor of a magnifying glass. The area or ob-
jects “under” the lens can take on additional properties or receive ad-
ditional interactions, as seen in examples such as Magic Lens [5], 3D
Magic Lens [24] and NPRLens [18]. Our lens system drew inspiration
from these examples. In addition, our lens widget is location-aware
as our scene is spatially segmented, which is somewhat similar to the
BrainGazer visual query paths [6].

Lenses can also be used for dynamic labelling, in which the lens is
used to reveal additional data that would have otherwise created too
much visual clutter on the display [11, 12]. In addition, summaries
and other abstract information can be displayed as part of the labelling
scheme [4]. Our system uses a similar approach, but additional small
visualizations are shown instead of textual labels.

3 Problem

Within documents which describe physical objects, the words may
have two types of context. First, the context of the word in the sen-
tences of the document (i.e., co-occurrence relationships). Second, the
context of the word in terms of its location in the physical world and
its spatial relationship with other words mentioned in the document.
For example, the sentence “The brake lights would not turn on, but
the horn continued to sound.” indicates a co-occurrence relationship
between “brake lights” and “horn,” but the physical contexts of these
objects in a real vehicle are quite different.

Traditional text visualization approaches such as word clouds could
be used to summarize the reports about a particular subject matter
over a given time period, but they present the common terms out
of context—both co-occurrence context and physical space context.
Some approaches to text visualization spatially organize words based
on semantic relationships such as the “is-a” relation [8], but we are
unaware of any visualization which approaches text analysis by visu-
alizing the real-world spatial contexts of the words in the text.

Revealing the spatial dimensions may have several benefits. Fore-
most, the familiarity of the form makes the subject matter immediately
recognizable to experts and novices alike, combined with the message-
carrying capability of NPR illustrations, we argue that our approach
creates a rich, engaging experience. Second, it is possible to conduct
a different type of data exploration: the spatial dimension allows us to
explore proximal relations and filtration by spatial volumes, possibly
allowing new insights to be formed.

Consider product quality reports for a musical instrument. Visu-
alizing these report allows one to see exact location of the problems
on the 3D model, for example: which valves are failing. Seeing the
instrument in physical form may promote conjectures that are less ap-
parent with text or abstract visualization, for example: perhaps the
valves failed because they are encased in a faulty housing. There are
many applicable datasets which carry this sort of physically mappable
vocabulary: hotel and consumer product reviews, technical manuals,
and technical support logs are examples.

3.1 Use Case: Vehicle Complaint Reports

We choose to demonstrate our approach on a dataset of vehicle com-
plaint reports. Each year thousands of reports are submitted to the
NHTSA database, consisting of consumer complaints, defect reports
and manufacturer recalls. Each report has fixed fields describing the
details of the incident (date, make, model, etc.), and a free-form text
field, typically containing several sentences which describe the inci-
dent in detail, including what physical parts were damaged or bro-
ken. Thus this data can be mined for frequency counts as well as
co-occurrence counts of car parts. All together the meta data and free
text offer a wealth of information on safety and reliability issues of
vehicles. Consumers can access this data online to support car-buying
decisions. The current interface uses a conventional search form, re-
turning long lists of textual results; there are no mechanisms to support
concise overviews or dynamic details-on-demand.

In order to derive concrete requirements for our design, we needed
to determine the considerations which are most important to a con-
sumer in a purchasing decision. To determine this, we surveyed car-
experts’ columns, user forums, and review services such as Consumer
Reports and Edmunds. Our findings revealed that aside from price,
safety, trends and capability to relate problems to each other are of
high concern. Based on these findings, we have four design require-
ments for our visualization:

1. Provide an intuitive representation and make important items
clearly visible;

2. Facilitate finding of trends, interesting facts and causal relations
in the reports;

3. Allow multiple types of comparisons such as time, components
and make/model of vehicles;

4. Provide for reading of the original complaint report in the context
of the visualization.

4 Data Processing

We applied several processing steps to each text record. First, we
parsed the metadata fields. Then we parsed all nouns, and filtered this
list to create a hierarchical vocabulary of components mentioned in
vehicle defect reports. Each component reference was then counted in
all documents to calculate a word score and co-occurrence scores for
that (component, document) pair. Finally, we segmented 3D models
to match our keyword ontology. These steps are explained in greater
detail below.



Fig. 3. The Descriptive NPR visualization in use. The lens widget is used to solicit more details in the front portion of the vehicle. The time
frame is set to include the first four months of the year 2000. The document panel at right shows some texts matching the filter query.

4.1 Hierarchy Generation

For keyword extraction, we leverage the concepts of meronym and
synset from WordNet [16]. A meronym in WordNet describes a part-
of relationship between two objects. For example: wheel is a part of
(a meronym of) a vehicle. Using “vehicle” and “automobile” as root
words we created a hierarchy of part-of relations from the most dom-
inant object down to the most specific sub-components. A synset rep-
resents a set of semantically equivalent words, for example “bonnet”
and “cowlings” are semantically equivalent to the component “hood.”
For each node in the hierarchy, we also extracted its synsets in order
to increase our vocabulary coverage. Thus, our initial hierarchy was
based only on WordNet.

As an additional step to expand our dictionary of keywords, we per-
formed part-of-speech (POS) tagging on our document corpus. POS
taggers look at the grammatical structure of text and break down sen-
tences into lexical categories such as nouns, verbs and adjectives. We
then collected the most frequently occurring nouns and manually se-
lected the relevant terms, adding them into our parts hierarchy when
they did not already exist.

Lastly, we manually pruned the hierarchy to remove any keywords
that may cause false-positives in our matching scheme, for example:
“first”, “second” and “third” refer to first, second and third gears re-
spectively, but including them will likely result in counting more oc-
currences of “gears” than we should. A sample of the final component
hierarchy is in Figure 2.

4.2 Text Scoring

Each text document may contain multiple component keywords (e.g.,
“brake”), and each component keyword can also appear multiple times
within a single document. Let G be a (possibly empty) list of currently
selected components. The score for component c, S(c,G) is defined
to be the total number of documents that have at least one mention
of c and G. Thus when G is the empty set we get the absolute oc-
currences for c alone, when G is non-empty the score reflects the co-
occurrence strength among a set of components. Each text document
is only counted once per component to discourage biases coming from
longer documents where parts are repetitively mentioned.

Early in our design, we considered applying sentiment analysis to
our data, so that we would know if mentions of a particular component
were positive or negative. Given the poor performance of currently-

Fig. 4. Design options using hues and lighting effects. Top-left: Single-
hue, solid colour. Top-right: Multi-hue, solid colour. Bottom-left:
Single-hue, simulated lighting. Bottom-right: Multi-hue, simulated
lighting (used in our prototype).

available sentiment taggers, and rather uniformly negative nature of
the sentiment in the car defect report database, we make the assump-
tion that when a car part is mentioned, that mention indicates a failure
of that part. We know this assumption not to hold in all cases, but
given the large number of documents in our dataset, we believe the
errors will be subsumed by the volume of data. This problem is made
less serious by the ability to drill down to read the underlying docu-
ments to confirm the problems with (or praise about) the mentioned
components for oneself.

4.3 3D Model Preparation

We manually segmented the 3D model to match the major components
in the hierarchy. We organized segments into mesh groups and as-
signed a unique identifier to each group. Where there are missing com-
ponents we inserted placeholder geometries, using vehicle schematics
as a guide.

In this work we have chosen to use a sedan model to represent the
vehicle population, as the majority of the reports are related to sedans.
While there are variations in how parts are placed spatially among



Fig. 5. Left: Lens widget with no depth plane specified. Right: Lens
widget with active depth plane cutting into the model. The wheel and
part of the radiator are in front of the plane, thus rendered as outlines.

different brands of vehicles, we believe in general there are sufficient
similarities to be represented by a single model. We could provide
specific 3D models as they become available.

5 Design of the Descriptive NPR Interface

The interface is composed of four components, as seen in Figure 3:

1. A stylized rendering of a 3D model forms the central point of our
visualization. It emphasizes the most highly scored components
to create a pop-out effect.

2. A lens widget to explore the 3D visualization; the lens extracts
detailed information of entities under the lens.

3. Heatmap visualizations for showing trend and outliers for indi-
vidual entities.

4. The document panel displays the source text documents that
match the current query.

In addition, we created a set of filter widgets that provide domain-
specific navigation for our vehicle dataset. These filters are fixed in
place at the top of the display space.

We designed the visualization to run on large, multi-touch displays.
We see potential deployment of our system in a walk-up-and-use or
office meeting scenarios. Though the design of the touch interactions
was an extensive part of the research, our focus for this paper will be
on the visualization technique.

5.1 3D Visualization

The central contribution of this work is the mapping of abstract se-
mantics onto realistic looking, 3D models. But this is also a source of
complication: we have to deal with the additional difficulties of navi-
gating in three-dimensional space, as well as work around perceptual
limitations. So why use 3D models in the first place? We make the
argument that the entities are inherently in 3D space, thus it is more
natural to observe them in their real-life representation. While a se-
ries of linked 2D images may provide some form of realism, a viewer
would have to observe multiple images and mentally connect picture
to picture to get a sense of overview.

5.1.1 Rendering

Non-photorealistic Rendering (NPR) can be considered to be any com-
puter generated graphics that do not involve the accurate simulation of
light. We incorporated several NPR effects into our rendering pro-
cess, in particular, we use hue/transparency to denote importance and
switch between outline and non-outline styles for semantics. Exam-
ples of such scene segmentation strategies are often employed from
the Scientific Visualization field (e.g., [23, 26]).

Effects on the 3D model are assigned based on scores of entities
in the text. Entity scores are dual encoded as both hue and opacity
on the 3D geometry. We map the scores to a yellow-to-red hue scale
which is further divided equally into six bins. While this setup has a
limited granularity, it is easier to perceive values from a small number
of hues than a continuous scale. We vary opacity values to partially
mitigate occlusion issues and to emphasize highly scored entities, thus
the amount of opacity is proportional to the entity’s score. To ensure

at least partial visibility at all times, the opacity is limited to a mid-
range between 40 percent and 80 percent. Entities with zero scores
are rendered qualitatively differently, with an outline style in a just no-
ticeable colour so they are visible, but not overly distracting [2]. This
indicates an ‘inactive’ state, but maintains spatial context. Outlines are
computed by comparing dihedral angles between neighbouring poly-
gons [20]. To show entity selections, we draw a silhouette-like contour
around the selected geometries to simulate a glowing effect. We ren-
dered the silhouette by creating blurred versions of the 3D geometries
as textures, then superimpose them back into the final scene.

5.1.2 Selection

By default the application has no entities selected, thus the visualiza-
tion reflects the absolute number of occurrences of each entity. As
selections are made, each entity’s score is recomputed to show co-
occurrence relations with the selection. Note since selected objects
fully co-occur with themselves, they are promoted to the highest bin.
In this manner, high correlations are red and highly opaque, while low
correlations are yellow and highly transparent. For example, if we se-
lect the windshield wiper, the visualization is rerendered to show en-
tities that co-occur with the wiper component and the strength of this
relation. If we also select the windows, the visualization will show
co-occurring relations to both windshield wiper and windows. This
example is reflected in Figure 1. The rerendering process is facilitated
by an animated transition that interpolates the graphical effects.

5.1.3 Design Trade-offs

There are several design trade offs with our technique. Blending in
3D space may produce artifacts as there is no guarantee of hue preser-
vation. A preservation scheme does exist [7], however we did not
implement it due to additional performance complexity of per pixel
adjustments. Subjectively, we did not find any visual distractors thus
decided this was not necessary. A single hue approach was tried with
varying saturation and opacity, but it lacked the pop-out effect visible
in multi-hue schemes. The effect of lighting is another design trade
off. Lighting effects enhance the surface shapes so objects are easily
distinguishable from one another. However, the colour properties are
modified such that they no longer match those in the scale legend. A
complete lack of lighting produces the opposite problem: the colours
match exactly, but it is difficult to distinguish objects in the model, es-
pecially if they are near or partially occlude each other. Adding object
outlines in non-lighting situations helps, but is not aesthetically pleas-
ing and can produce visual clutter. Ultimately we decided that object
recognition and familiarity outweigh the colour offsets. We contend
that with only six buckets on the scale the lighting effects do not dis-
turb the colour perception enough to obscure which hue-bin the com-
ponent belongs to. Our experimental results support this contention.
The various trade-offs can be seen in Figure 4.

A specific challenge of using transparency in 3D rendering is that
modern GPUs do not provide native support for out-of-order blend-
ing: objects that are positioned behind others can appear to be in front
if they are not rendered in depth order, whether it be back-to-front
or front-to-back. Sorting geometries by their distance away from the
camera can help but is expensive, view-dependent and does not solve
certain pathological cases where geometries intersect. Recently there
are quite a few developments in order-independent-transparency that
yield better results, e.g. [3, 10, 17, 29]. We implement a version of
dual-depth peeling [3] for our prototype. It yields accurate and pleas-
ing results at sufficient speed, with less reliance on specialized hard-
ware features.

5.2 Lens

Using a metaphor of looking through a magnifying glass to reveal
more details about a specific object, we created an interactive lens to
extract and show detailed information about entities in the text.

The lens operates in a hybrid 2D / 3D space: the lens itself exists
on a flat 2D plane and casts a cylindrical query volume into the scene.
To be able to query different entities, each entity object is tested to
see if its centroid is in the querying volume. Entity objects in the lens



Fig. 6. Heatmap widgets for several entities. Left column: Component-
max perspective. Centre column: Global-max perspective. Right col-
umn: Month-max perspective.

will activate their heatmap charts, which are displayed alongside the
lens’ circumferences in a flush right / flush-left manner. To associate
3D geometry and the heatmap chart, we connect them together with
line segments similar to the technique presented in [11]. More ad-
vanced labelling algorithms exist and may produce more eye-pleasing
layouts [1, 12], though they are not implemented in our prototype and
are considered future work.

The lens widget utilizes its own rendering pipeline, object ge-
ometries are sent into the pipeline as normal, the rasterized result is
then stored in an intermediate buffer and later combined in fragment
shaders with the default rasterization scene. This is an independent
process, and thus allows us to render the lens’ scene in different ren-
dering styles and semantics. To visualize the lens widget itself, we
draw a semi-transparent border around its circumference so viewers
are aware of its existence. When interacting with the lens widget, the
widget is active and we render the border in blue, otherwise we use
the default grey colour. The semantics of the lens is not impacted by
whether the lens is active or inactive.

The lens enables three different actions. The position of the lens
can be moved by dragging within the lens, impacting the currently
selected filters and the heatmap charts. The lens can be resized by
dragging on the border of the lens, increasing or decreasing the query
area. Lastly, the depth plane can be adjusted by rotating the depth
selector tab around the circumference of the lens (see Figure 5). The
depth plane function provides a method for people to reduce occlusion,
as all entities that are the cut by the plane are drawn in an outline style,
allowing viewers to see through them and into the object. Objects that
are cut off are excluded from any scoring calculations, they also have
their heatmaps hidden to reduce visual clutter. These three interactions
can be combined together to create a rich, flexible query mechanism.

5.3 Heatmaps

Heatmap visualizations on the entity labels communicate how each
entity’s score changes over time. We project the time-series data onto
two dimensional grid much like a calendar. We considered other de-
signs, such as small bar charts, but decided on heatmaps because of
their space-efficiency and ability to support yearly (row-to-row) and
monthly (column-to-column) comparisons . For example, it is easy to
compare spring seasons across multiple years, as the relevant cells are
adjacent to each other. Each grid cell is colour coded with respect to
the 6-bin colour encoding to denote the scoring strength. The heatmap
is labelled with the name of the entity, and the overall occurrence and
co-occurrence scores. The entity labels could be easily adjusted for
other analysis scenarios to show other forms of data or a different type
of visualization.

The heatmap is selectable, which is equivalent to making a selection
on the 3D visualization. Moving one’s finger over a heatmap cell will
toggle a brushing effect, drawing a border around the cell and all cells
in the same time period across all visible heatmaps, allowing for quick
comparison. A tooltip is also displayed, showing the cell’s data in
numerical format.

5.4 Document Panel

The document panel is the final stage of our drill-down process, pro-
viding the complete texts which drive the higher level views. Docu-
ments matching the current filter query (hierarchy, time, component
selections) are shown in chronological order in the panel. Each doc-
ument is divided into two sections: the header section shows each
documents fixed attributes and the content section shows the raw text
descriptions. We denote the selected entity words and co-occurring
entity words using blue and grey highlights respectively. Scrolling is
enabled by a single finger drag along the right border of the document
panel. The document widget is hidden by default, and can be activated
by a touch and hold gesture on the background. Once it is activated it
can be moved around by the viewer to a desired screen location.

5.5 Filter Widgets

Two types of filters are available: time and organizational hierarchy.
The time filter consists of two sliders representing year and month,
the selection of month and year are independent of each other. The
hierarchy filters are shown as a set sequence of drop-down lists that
allow viewers to refine their queries successively, from most general to
most specific: manufacturer, make, model and model year. Histograms
are embedded into both widgets to enhance visual cues [27], with each
bar representing the volume of documents for each time period, or
each organization.

6 Enabling Analysis

Aside from query-based manipulation, we provide higher level inter-
actions to ease finding trends and making data-driven decisions.

6.1 Heatmap Views

The heatmaps data is, in essence, time series data. There are multi-
ple ways we can view this time series to derive interesting patterns
and trends. For this prototype we want to concentrate on compara-
bility across different components and across time. For example, we
want to enable questions such as: Which vehicle component had more
complaints? Which month had the most complaints during the year?
To do this, we need to have multiple perspectives where data can be
viewed from different functional needs (see Figure 6). We have pro-
vided the following perspectives, each using a different denominator
to normalize component scores:

• Month-Max: A monthly perspective where the score of each
month is divided by the maximal score for that month, over all
components.

• Component-Max: A component perspective where the score of
each month is divided by the maximum score for that component
during the selected time.

• Global-Max: A global perspective where the score of each month
is divided by the maximum score of all components over the se-
lected time.

Each of the perspectives above answers different questions and has
its own advantages and disadvantages. The month-max perspective
allows us to see which component had the most occurrences in a given
month, but comparison of adjacent cells is meaningless because each
month uses a different base value. The component-max perspective
is the opposite, it allows us to see trends within a single entity, but it
does not allow comparison across components. Lastly, the global-max
perspective is good at showing the outliers and supports both month-
to-month and component-to-component comparisons, but it is difficult
to see overall trends because the outliers, if any, will dominate and
push all non-outliers into the same scoring bin.

For consistency, the perspective is the same for all heatmaps and
can be changed using an on screen drop-down selector.

6.2 Comparison

Comparison mode allows people to compare entity occurrences across
two different subsets of the data. To select data to compare, we provide
two sets of filter widgets which can be used to specify manufacturer,
make, model and model year. Each set of filters specifies a query,
which we will call Q1 and Q2, and each query is assigned a colour,



Fig. 7. In the comparison view, the outline on each component indicates
whether vehicle one (pink) or vehicle two (green) had a higher rate of
failure. The fill colour indicates how frequently the component failed
across both vehicles (the sum). The engine is mentioned frequently in
this comparison, and more often in relation to vehicle two.

which is used in the visualization. For example, we can compare
Honda Civic (Q1) to Toyota Corolla (Q2), or we can compare Ford
Focus (Q1) against all other Ford vehicles (Q2), by not fully specify-
ing Q2. Comparison mode is implicitly activated by specifying Q2.
When Q2 is empty, normal mode is enabled.

Two separate measures are used to render the comparison view.
The contribution sum is the aggregated component score from the two
query sets: it reflects the overall importance of the component by em-
phasizing the most frequently occurring components matching Q1 and
Q2. The percentage difference describes the relative frequencies of a
component, whether it occurs more frequently under Q1 or Q2 relative
to the total contributions from Q1 and Q2 respectively. The percent-
age score is calculated as the component score divided by the total
contribution. Then the percentage difference follows as percentage
score Q1 minus percentage score Q2, with the sign and magnitude in-
dicating which query set has the stronger presence of that component.
We made the decision to use percentage based comparisons because it
enables the comparison of query results of different sizes.

These scores are used to render the 3D view (see Figure 7). Us-
ing the percentage difference, the colour of the outline of a component
indicates which query set has the higher rate of complaints, and the
opacity of the outline indicates the strength of the difference. Using
the contribution sum, the standard hue and opacity encoding is used
to indicate the sum of the two query sets, giving an impression of
the overall importance of that component. Thus, a highly problem-
atic component from both queries will have a strong presence overall
but with a faint outline, while a lopsided but infrequently mentioned
component will have strong outline but barely visible interior colour.

6.3 Aggregation

By default, the system treats each object individually rather than object
groups. For example “seatbelt,” “backrest,” and “seat” are all scored
separately, even though they are logically under the group “seat.” This
setting allows people to isolate and identify unique problems accu-
rately. There are times, however, when this level of information is
unnecessarily detailed and a higher level of abstraction is desirable.

Aggregation mode mimics the type of high level rating system
found on consumers review websites. When aggregation mode is en-
abled, individual objects, and their scores are aggregated up to the first
level entities. In our specific case, the first level are the major sub-
systems in a vehicle. Aggregated components respond to interaction
events as a single group (e.g. selecting “seatbelt” selects the entire
“seat” sub-system). Figure 8 shows a before and after illustration of
using aggregation mode. We can observe that the engine and seat sub-
systems have much higher severity when viewed as a whole rather than
their individual parts.

Fig. 8. Aggregation mode. Left: disabled. Right: enabled.

Fig. 9. A participant using the lens to examine the vehicle.

7 Evaluation

We conducted a preliminary evaluation study of our prototype. The
study was largely qualitative in nature: our goal was to assess if, and
how a person can use the visualization to facilitate his/her analytical
tasks, which are framed around scenarios of assessing safety and re-
liability issues to support purchasing decisions. We further present
several use case scenarios to demonstrate the potential of our visual-
ization.

7.1 Methodology

We recruited 12 participants from the student population at a technical
university. All had experience with touch interfaces, and six had pre-
viously used a 3D interface. Only two participants owned their own
vehicle, but six had previously purchased a car and seven had previ-
ously investigated vehicle safety issues in some way. Participants were
asked to perform analytical tasks using the visualization, which ran on
a 60 inch multitouch enabled display. Our study setup can be seen in
Figure 9. Note that in order to reduce personal bias, we removed iden-
tifiers and replaced them with placeholders, for example we replaced
“Toyota” with “MFR1.”

After a brief tutorial on how to interpret the visualization and how to
use the interface, participants were asked to perform three sets of tasks.
The first set consisted of warm-up exercises aimed to help participants
become familiar with the interactions (these are excluded from our
analysis). Next came a set of focused questions regarding interpreta-
tion of the visualization. For example, “Select the most complained
about component in the year 1999,” or “What components in the ve-
hicle are associated with complaints about windshield and wheel?”.
Subjects then had to adjust the visualization and identify the correct
entities. Finally, the last set of questions were more open-ended in
nature. For these, specific scenarios were presented to the subjects,
they were asked to analyze the scenarios and come up with a decision
based on the visualization and its widgets. For example, we asked:
“Between 1997 and 2000, which of the vehicles X and Y would you
purchase and why? Assume they are similarly priced.” After com-
pletion of the computer-based tasks, we conducted a semi-structured
interview to solicit opinions from participants about their experiences
using our system.



Each study session took approximately one hour to complete,
though participants were allowed to take as much time as they wanted
on any task. Each session was recorded on video, and touch interac-
tions were logged by the system.

7.2 Discussion

12 participants took part in the study, however one session was ex-
cluded from our analysis; the participant exhibited a lack of English
language skills which lead to difficulty understanding the instructions
and contradictory statements during the interview portion.

In general, feedback was favourable and most tasks were completed
reasonably well, in the sense that correct answers were derived based
on findings from using our system. There were a few exceptions: some
participants did not correctly respond to the focus questions that asked
them to identify outliers (3/11 and 1/11). This may partly be attributed
to initial unfamiliarity with what the visualization is trying to show,
as one participant (P5) revealed later that at first the answers were not
based on the visualization, but rather on personal opinion about auto-
motive vehicles. The other exception was a task that required a person
to switch among multiple visualization views and compare them in
sequence. The added cognitive load of memorizing states likely con-
tributed to the varied answers.

Participants enjoyed using the 3D visualization along with the lens
widget. Several participants made explicit comments with regards to
the usage of familiar form factor: “Nicer to look at a picture than a
bunch of numbers.”(P1), “everything is in detail, very interactive. [. . . ]
The visual, is self-explanatory” (P8), “I can see clearly each part in the
car, so I can know what to choose”(P6) and “it is relatable, I’ve been
in cars and I’ve had the opportunity to see some of the components.”
(P2). Using the lens widget for dynamic focusing of interesting data
was voiced by several participants: “kind of cool, being able to dissect
with it.’ (P1) and “You can zoom in to the parts that you cannot really
understand, for example the transmission.” (P7).

The heatmap widget received the least favourable responses, with
four participants mentioning that it provided too much low-level de-
tail, in particular P11 suggested using a pie-chart or bar-chart for each
component in comparison view. The design implication here may be
to provide different levels of granularity that can be dynamically ad-
justed. We observed that three participants had difficulties understand-
ing co-occurrence, however, we are not sure if this is due to insufficient
explanations at the start of the study, or the fact that the same colour-
ing scheme that is used for both occurrence and co-occurrence caused
the confusions. Several interaction issues such as executing touch ges-
tures were noted during the study, however participants seemed to en-
joy using the visualization: “even though there are some interaction
problems, it just looks really good!’ (P10).

In Figure 10, we present a summary of the interactions logs for the
task of comparing two different types of vehicles. In this task partici-
pants were free to use any widgets they want to investigate which of the
two vehicles is more reliable. From the figure, we see that participants
first remove irrelevant data using the filters, then they either interact
through the lens or directly with the 3D scene to explore the visual-
ization. The navigation actions were mostly executed in short bursts,
followed by an idle period. This behaviour appears to correspond to
finding interesting data and then spending time to assess his/her find-
ings. We thought for most participants the lens widget would be used
only after the 3D model is moved into a desired orientation, however
this is not supported by the logs. The participant strategies seem to
group into three types: use of both the 3D scene and the lens widget for
exploration (P3,6,8,9,10), only the lens (P2,7), and only the 3D scene
(P1,4,5,11). Surprisingly, participants did not make use of the docu-
ment widget during this task. Further investigation of the role full-text
details can play in decision-making using d-NPR is warranted.

7.3 Analysis Scenario: Toyota Recall

In addition to experimental testing, we can examine how our visual-
ization system works by reviewing example scenarios. The Toyota
vehicle recall happened between September 2009 to February 2010
and had to do with faulty accelerators and brakes. We wondered if

Fig. 10. Widget usage for the task of comparing two vehicles.

there were any leading or lagging indicators in our data, which may be
indicative of the problem. We set the visualization time frame to be be-
tween 2008 and 2010 and selected Toyota as the vehicle manufacturer.
The first thing we noticed is that the engine, usually one of the highest
occurring components in the complaint reports, no longer dominated
the visualization. Instead, two components pop out: brakes and accel-
erator. A closer examination with the lens widget raised more ques-
tions. The heatmaps show that there are two outlier months where a
huge amount of complaints were registered: February 2010 and March
2010, after the recall was announced. Perhaps the widely publicized
event triggered a loss in consumer confidence, which in turn led to an
over-reporting of problems. This is supported by the sharp drop-off
after March 2010.

7.4 Analysis Scenario: Using Spatial Dimension

This scenario describes how a regular consumer, Daniel, may use the
visualization to research a problem. Daniel has about three years of
driving experience but does not know a lot about cars. Recently, while
driving, he noticed a rattling sound coming from the front passenger
side of his vehicle. He decides to conduct some research on his own
before taking the car back to the dealership.

Using the visualization, Daniel filters the dataset to focus on his
vehicle model. Since he is not sure exactly where the noise came
from, he uses the lens widget to focus on components near the front-
passenger region. Using the lens, he can see that the suspension com-
ponent has a higher number of complaints registered against it than the
other components in the focused area. Wondering if the suspension is
normally a problematic component, Daniel activates the comparison
mode to view his vehicle against all other models by this manufacturer.
He finds that the suspension for his model is more frequently reported
than for other cars. He then selects the suspension component using
the heatmap, and toggles the document widget so he can read through
the actual complaint reports. After a few minutes of reading, Daniel
notes that there are at least eight or nine reports that seemed to docu-
ment similar noise issues and point to defective suspension setup. He
decides that he should contact his dealership to have them check it out.

8 Implementation

Our prototype is written in Java and Java OpenGL. The dataset is
freely available on NHTSA’s website and consists of data from 1995 to
present day. Our 3D model is taken from Google 3D Warehouse1 and
has approximately 160K vertices. Our application runs at 1680x1050
resolution and was able to achieve between 15-30 FPS, depending on
model complexity and size of the dataset. We use a 3.2GHz I5 Quad
Core CPU.

9 Discussion and Future Work

The system described here is a working prototype that is capable of
allowing people to explore text entities through the use of 3D NPR-
renderings and spatially-aware UI widgets. However, there are still
some outstanding opportunities for improvement which can form the
basis for future work.

Our parsing uses a simplistic dictionary approach. Creating a parser
capable of deciphering more complex relations, such as dependency
relations, would enrich the data. Another path to explore is sentiment

1http://sketchup.google.com



analysis. We did not pursue this path as our dataset has an overall
negative connotation, however in the more general sense, sentiment
analysis may add value, particularly if we were to apply our approach
to consumer product reviews where mentions are often both positive
and negative.

The initial setup cost of procuring the hierarchy and 3D models
can be time consuming and labour intensive. However, our semi-
automatic hierarchy construction method, using widely accepted lexi-
cal resources, is certainly faster and more accurate than fully manual
creation. The hierarchy and model generation is a one-time cost and
the hierarchy can be adjusted or expanded for similar objects without
starting anew.

In terms of rendering, varying opacity and hues only partially solves
the occlusion issue; where there are densely packed geometries it
can still be difficult to distinguish entities from one another. Alter-
native approaches, such as using exploded views to expose densely
packed regions may help, though exploded views can also distort spa-
tial relationships. It is also important to note that due to the physical
size differences between objects in the model, it may be that large
objects (e.g.windows) receive additional attention while they are ar-
guably less important than small objects (e.g.brakes). We considered
enlarging/shrinking parts based on scores, but this design would re-
quire readers to know the baseline (undistorted) size of objects. The
use of distortion as a descriptive rendering technique is a promising
avenue for future investigation.

Several participants experienced some difficulty selecting objects
which were occluded or in dense regions. The lens and heatmaps offer
one way to improve selection in these situations. Another possibility to
ameliorate difficulties with selection of components in dense regions
is to use a priority-based selection based on component scores.

Lastly, our prototype does not take into account the social aspect
of analysis—we allow a variety of exploration capabilities, but did not
offer any functions for people to save, restore and share their findings.
Allowing people to save, share and search other people’s findings will
certainly make the application more useful. Analyzing long-term us-
age patterns may also yield more insights.

10 Summary

In this paper, we introduced a text visualization approach which we
call descriptive non-photorealistic rendering. Our contributions are:
(1) A novel approach for text visualization that combines spatial and
non-spatial attributes to create a visualization that is based on real
world semantics. (2) An interactive visualization prototype using our
approach for the analysis of vehicle defect reports. An initial study
of our system showed favourable reception by study participants, and
that they were able to use the visualization to analyze the text corpus.
However, a thorough comparative study is needed to gauge the effec-
tiveness of our visualization against standard approaches.

While the examples given in this paper are framed around the auto-
motive industry, d-NPR is generalizable to other domains. It would be
interesting to explore new datasets to see what type of insights can be
gleaned from our technique. For example, we mocked up an example
of exploring a visualization of building maintenance records, as seen
in the far right of Figure 1. In the future, we would like to explore
alternative descriptive rendering techniques, refine the interaction de-
sign, and apply our approach to analyze different datasets.
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