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Fig. 1: Guided relevance feedback for the targeted refinement of incoherent areas in the Semantic Concept Space. This user guidance
component tours through the space and highlights potentially uncertain areas, suggesting a recommended action for refinement.

Abstract— We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement
while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of
potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the
topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define
concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be
transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying
vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users’ decision-
making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing
the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two
user studies that show topic model quality improvements through our visual knowledge externalization and learning process.

Index Terms—Topic Model Optimization, Word Embedding, Mixed-Initiative Refinement, Guided Visual Analytics, Semantic Mapping

1 INTRODUCTION

Efficiently categorizing the contents of large text collections into the-
matic groups is a common task for scholars in the humanities and social
sciences. These data and domain experts usually embark on a process
of summarizing documents, extracting concepts, modeling their rela-
tions, and finally, aggregating the obtained information to build their
knowledge. The generated knowledge is typically externalized in vari-
ous resources, including traditional books and papers, but also exten-
sive knowledge bases [47]. However, even given the eagerness with
which experts strive to model and document their knowledge and intu-
ition, oftentimes available resources do not capture all specific aspects
of a domain’s semantics [22]. The shortage of domain-specific knowl-
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edge representations in accessible formats has sparked a bustling re-
search area [56] at the intersection of linguistics and machine learning.

Simultaneously, domain-knowledge-independent machine learning
techniques are becoming more reliable and accessible. For instance,
topic modeling algorithms have wide applicability across a multitude
of domains as they augment the time-consuming task of categorizing
document collections into thematically-related groups. Despite their
usefulness, the quality of their results highly depends on the suitability
of the parameter choices and how well they fit and reflect the charac-
teristics of the analyzed document collection and domain semantics.
However, as such models are typically black boxes, they are not readily
understood by non-machine-learning-experts. Thus, there is a need for
machine learning refinement techniques that abstract the complexity
of underlying models, enabling users to understand, diagnose, and re-
fine the results. This user demographic does not desire to understand
the inner-workings of machine learning but would rather to teach the
machine their semantic knowledge while remaining model-agnostic.

Promising visual analytics solutions have been proposed to address
such challenges in a collaborative human-machine effort. For example,
to model the semantic relations of concepts in a corpus, ConceptVec-
tor [44] has been proposed as an interactive lexicon building approach
using word embeddings. On the other hand, UTOPIAN [8] enables
users to interactively train a topic model, resulting in a clustering of



documents into thematic groups. While the first approach is designed
to consider the user’s knowledge for top-down concept generation, the
second one is data-driven, generating topics bottom-up. Techniques
combining high-level analysis concepts with low-level model interac-
tion, e.g. through bidirectional semantic interaction [12], have proven
effective since “the power of the computational models can be lever-
aged without their complexity” [19].

We present a visual analytics technique that tightly links these two
perspectives to allow users to externalize their domain knowledge for
topic model refinement without understanding the inner-workings of
such models. Our lead motivation for such an iterative refinement
process is to enable users to teach [50] the machine learning model
(through concept refinement), and in turn, the model to respond by
learning a new refined representation (through a topic model update)
that is presented to the users to show them the effects of their inter-
actions. Hence, our technique relies on two independent hierarchical
structures, (1) the concept hierarchy, representing the user’s seman-
tics (top-down), and (2) the topic hierarchy that is based on the au-
tomatically computed results of a topic model (bottom-up). Both hi-
erarchies operate on the same vector space but are presented in two
separate views. The concept view is used as the interactive view for
domain knowledge externalization, while the topic view is a reactive
component for inspecting the topic model updates caused by refining
semantic relations in the first view. This duality is captured in the topic
and concept representations as two superimposed canvases, facilitating
the analysis of associations [26].

Thus, the main challenge for our technique is to define accurate map-
pings from the users’ interactions back to actionable instructions for
the topic model optimization. On the visualization side, the challenge is
to find an accurate and faithful spatialization of concepts and topics on
a canvas, while reducing clutter and retaining semantic neighborhoods.

We designed Semantic Concept Spaces as a mixed-initiative tech-
nique tailored to support users in modeling their domain knowledge
through defining semantic relations between concepts. Our approach
(1) provides different entry points and abstraction layers for the users’
analysis; (2) integrates users in every step of the semantic concept cre-
ation; (3) allows for targeted refinement through guided relevance feed-
back, as well as, concept discovery through serendipitous exploration;
(4) enables cross-corpus and model-agnostic learning to allow the trans-
ferability of the learned concepts to other topic models and similar doc-
ument collections; and (5) abstracts from the refined semantics to up-
date domain-specific concepts, avoiding future cold starts [48].

Figure 2 depicts the architecture of our approach, starting with pro-
cessing a document collection to extract relevant keywords and embed-
dings [35]. These build the basis for the semantic similarity that gener-
ates scored keyword vectors as input for topic modeling, they also ini-
tialize the interactive concept generation. This step extracts seed-words
for the concept generation, optionally including user-defined structures.
To define a meaningful spatialization, concept neighborhoods are cal-
culated using t-SNE [28]. After the building of the initial concept hier-
archy, all elements of the visualization are projected [38] onto a can-
vas in layers. The visual analytics interface is the main workspace for
the user’s interaction, this enables users to inspect concepts and topics
to [T1] understand their relationships, [T2] diagnose potential con-
flicts, [T3] refine the concept space based on their domain understand-
ing, and [T4] update the topic modeling based on the refined concept
space. A continuous quality monitoring and refinement recommenda-
tion supports these tasks and enables targeted user guidance.

We evaluated our technique with three approaches. Starting with a
mixed-method expert study, six participants used Semantic Concept
Spaces on a model refinement task. Second, a quantitative evaluation
of the model improvement achieved by experts, across eight model
quality measures. Finally, four independent annotators rated the quality
of these concept spaces and topic model results.

In summary, this work contributes an iterative visual analytics ap-
proach that captures user semantic knowledge to inform machine learn-
ing systems. Our technique provides user guidance and relevance feed-
back for overcoming the “looseness” of the interaction mapping. We
demonstrate and test it on a case study in topic model refinement.

Fig. 2: The human-in-the-loop workflow for Semantic Concept Spaces.

2 BACKGROUND AND RELATED WORK

This research is an entry into the burgeoning space of interactive and
explainable machine learning applications [21,33,37]. In the following
discussion, we will relate our work to research in the areas of semantic
interaction for visual analytics, and, more specifically, interactive topic
modeling and content analysis.

Semantic Interaction We are inspired by the call by Endert et al.
for interaction “beyond control panels,” where data is spatialized and
the interaction with that spatialization is the primary mechanism for ma-
nipulating the data space [18]. Semantic interaction is a type of direct
feedback users can provide to embed their semantic understanding into
a visual workspace [19,20]. In this paradigm, user interactions are used
to feed-forward into model refinements. For example, the global layout
in ForceSPIRE [20] is adjusted based on users moving words and doc-
uments to externalize their knowledge in the workspace. Cavallo and
Demiralp [6] employ both forward and backward-projection interac-
tions to enable user interaction with the dimension reduction algorithms.
Forward-projection enables users to change the high dimensional vector
and see how the projection is changed, and backwards-projection uses
direct manipulation to move nodes and see how the input vector changes.
In the present work we use semantic interaction to enable users to mod-
ify a word2vec word embedding space [41] by modifying the groupings
of words into concepts. As there may be many ways to adjust the seman-
tic space, we provide suggested interactions as a form of guidance [9].

Topic Modeling and Content Analysis Topic Modeling is used
to understand large corpora of text and summarize the knowledge
contained in them. The basic premise of topic modeling is to cluster
groups of documents and label them, obtaining topics. An overview of
probabilistic topic modeling algorithms can be seen in the survey by
Blei [4]. Several works explicitly address the embedding of the domain
knowledge into the topic space. Andrzejewski et al. [3] use Dirichlet
forest priors to split and merge concepts using domain knowledge,
improving topic descriptors. Chen et al. developed the MDK-LDA
variant on LDA which takes into account domain knowledge directly
to provide better topic descriptors [7]. Furthermore, approaches that
combine word embeddings with topic modeling can be beneficial for
learning both models jointly [42], as well as improving topic model
representations for short texts through word embeddings [36, 43, 58],
or creating improved word embeddings using LDA [46].

Exploratory visualizations for understanding topic spaces include
ParallelTopics [10], for exploring single and multi-topic documents
using parallel coordinates. The focus of our work, however, is not on
viewing the topic modeling itself, but finding an intuitive way for the
users to guide the modeling process. Visual topic modelling approaches
often include some interactive mechanisms for users to modify the mod-
eling output. TopicPanorama [55] creates a graph of topic relations ex-
tracted from multiple sources. Interactive tools are embedded to allow
users to modify the graph matching to suit their needs. Hierarchical-
Topics [11] is a visualization for understanding a large dataset at differ-
ent levels of granularity. Interactions allow users to adjust the hierarchy.
UTOPIAN employs a semi-supervised iterative feedback loop for users
to steer the modeling process [8]. ConceptVector [44] enables users to
embed domain knowledge interactively, through guiding the building of



concepts which are then used to analyze documents. We follow a simi-
lar approach in allowing users to re�ne the concept space which is used
as the substrate for topic modeling. This idea of an interactive loop for
re�ning topics appears also in the work of Hu et al. [30], in which users
guide the modeling process through constraints on the topic descrip-
tors. Hoque and Carenini embed similar feedback into a visualization
system in theConVisItproject [29]. In our previous work, we reported
a user-guided re�nement process for topic modeling based on “voting”
for models which have subjectively higher quality [15]. Speculative
execution has also been used to preview the outputs of topic modeling
and allow users to intervene and guide the process [16].

3 MODELING THE SEMANTIC CONCEPT SPACE

To model the semantic concept space of a corpus, we consider all the
words it contains and all their embeddings as a foundation (these are
a subset of all word in a language's vocabulary). Based on this set
of words, we build two separate, parallel hierarchies; the concept and
the topic hierarchies. Both contain four abstraction levels, sharing the
lowest level of allbase words. These two structures inform the global
importance and weights of the words but are kept strictly separate,
to guarantee a detachment between the user-de�ned concepts and the
concrete topic modeling approaches. This, in turn, ensures model
transferability and cross-corpus learning.

We generically refer to all words (also n-grams) in the corpus, as well
as words transitively contained in their embedding vectors, as “words.”
Base Wordsare all words that are neither part of the higher levels of the
concept nor of the topic hierarchies.
They can be promoted to become key-
word and/or descriptors through user
interaction. On the other hand, de-
moted keywords and/or descriptors
traverse down the hierarchy to be-
come base words. As suggested by
their name, these form the basis of the two data hierarchies.

TheConcept Hierarchy is user-driven and re�ects the semantic re-
lation between the words based on the domain knowledge externaliza-
tion of users.Descriptorsbuild the lowest level above the base word
and are all the words that describe a concept (one level up) but that are
not concepts or super concepts themselves. Descriptors have a strict
parent-child relation (1:n) to concepts.Conceptsde�ne the users se-
mantics and are used as the main level of interaction. They are the link
between the descriptors (their children) and the super concepts (their
parents). Although a word can only be either a descriptor or a concept
(exclusive relation), super concepts canincludeconcept words. The
reason for this decision is that in some corpora there are multiple super
concepts that only contain one concept each. Hence,Super Concepts
are automatically computed as a summary of the underlying region.
Users can de�ne the level of abstraction, i.e., the number of super con-
cepts interactively. However, in contrast to concepts, the parent-child
relationship between concepts and super concepts cannot be manually
adjusted but is computed to give a faithful overview of the current state
of the concept hierarchy at the time of viewing.

In contrast, theTopic Hierarchy is data-driven. It re�ects the struc-
ture of the underlying corpus based on the selected topic modeling ap-
proach.Keywords are all words contained in all corpus documents,in-
cludingall descriptive document keywords.Documentsare the given
unit of analysis in a corpus and are each represented by their topn-
keywords.Topics are computed using a topic modeling algorithm and
are each represented by their topm-keywords. Note, that the number
of top keywordsn;m for document and topics, respectively, can be ad-
justed by the user. By default both parameters are set to 15 keywords.

All words used in this approach are processed through a linguistic
pipeline [13,14], that includes stemming, POS tagging, n-gram extrac-
tion, stop-word removal, and scoring. As described in our previous
works [15,16], we treat each word as a weighted vector initialized us-
ing a user-selected scoring function [39]. This section discusses the
modeling of the semantic concept spaces, including the creation of the
concept hierarchy. The topic modeling hierarchy, on the other hand,
is subject to the concrete algorithm used. Since our approach is inde-

pendent of concrete topic modeling techniques, in this paper, we do
not discuss the topic modeling process in detail. For more information
on topic modeling and the concrete algorithm used throughout this pa-
per, please refer to our previous work [16]. Rather, in this paper, we,
focus on themodel-agnosticoptimization of topic modeling through
concept space re�nement. Section 5 discusses thisiterativere�nement
process and the interplay between the concept and topic hierarchies,
in more detail. Both hierarchies operate on the same underlying word
vectors. Changes in the concept hierarchy, therefore, in�uence the scor-
ing of words and, in turn, affect the topic modeling. This section dis-
cusses the four step process of modeling the underlying data structure
of thesemantic concept space. This includes building the concept hier-
archy, as well as deriving a spatialization of all objects in the concept
and topic model views based on the relations of the underlying vector
space model. This spatialization is used to initialize the two views, as
described in Section 4. To facilitate the readability of this section, we
use a simpli�ed example of two generic agenda items from recent US
presidential debates, namely,healthcareandtaxes.

3.1 Interactive Concept Generation

The �rst step in this modeling pipeline is the generation ofweighted
concept vectors. Assuming that the users' domain understanding can
effectively guide the automatic computation in this initial step, we allow
users tooptionallyintervene and interactively edit suggested concept
keywords which are used as priors for the further computation. This
initial concept generation is described in following four-step process:

(1) Seed Concept Extraction –After pre-processing and annotat-
ing all the words in the document collection to be analyzed, we extract
seed words. We rely on (a)Latent Dirichlet Allocation[5], as well as
a (b)Document Descriptor Extractor[15] to extract the most descrip-
tive keywords in a corpus based on word frequencies, tf-idf [51], log-
likelihood ratio [39], and G2 [45] metrics. Note, that these two methods
are only used as a heuristic for an initial fast separation of the overall
corpus space. We do not apply LDA for topic modeling. The extracted
seed words are considered the �rst concepts and are expanded in the
next step to concept vectors. In our example, this step might return two
keywords likemedicalandtaxes.

(2) Concept Vector Expansion – In this step, the initial concept
words are enriched with semantically similar words using the word
embedding serviceConceptNet[52] to createconcept vectors. Words
that are not part of the corpus, but contained in an enriched vector are
discarded to focus the vector space and avoid skewness. Note, that
we extract word embedding vectors for all words in the corpus but
only vectors associated withconceptwords are calledconcept vectors.
All words in a concept vector are regarded asdescriptorsfor their
respective concept. In our example, the concept vectors might contain
the following descriptors: ~medical:< system,health,relief,care> and

~taxes:< deduction,money,cuts,relief> .
(3) Interactive Editing and Enrichment – After the �rst two un-

supervised steps, we involve the user in the concept generation. Similar
to our proposedtopic backbone[16], users have the option to adjust the
seed concepts and their vectors as they see �t. They can as well intro-
duce new concepts or remove descriptors to adapt the generated con-
cepts to their understanding. However, as we cannot always assume that
users have existing knowledge about the corpus before exploring the
visualization, this processing step is optional. If skipped, the concept
vectors from the previous step will remain unchanged. A user might,
for instance, choose to add the descriptorhealthcareto ~medical.

(4) Scoring and Ranking – After the generation of theconcept
vectors, in this step, we use the scoring functions from theDocument
Descriptor Extractor(1b) to rank the descriptors of each concept. The
ranking and scores of each concept is used for weighting them later
on. For instance, the wordssystemandrelief in our example concepts
could be ranked low as these words are, in the one case, too generic
and, in the other, too undescriptive (i.e., occurring in both concepts).

3.2 Concept Neighborhood Computation

Based on the weighted concept vectors, this step computes semantic
concept neighborhoods to determine the spatialization of all the words



Fig. 3: Semantic Abstraction Levels for Concepts. By default, the entry point for the visualization (0) shows all major concepts. Users can opt to
start at a lower abstraction level (-2), revealing more concepts, or choose a higher abstraction level (+2), resulting in fewer initially visible concepts.

in the analyzed corpus. The output of this step is, therefore, a set of2D-
coordinatesf x,yg for each word, anchored by concept neighborhoods.
We rely ont-distributed Stochastic Neighbor Embedding(t-SNE) [28]
for the computation of the concept neighborhoods based on the word
embedding vectors. To guarantee a more stable projection result we
use theconcept vectorsas anchors throughout this work. Furthermore,
we con�gure the t-SNE calculation with the following parameters; a
perplexity of5, a theta of0:5 and5000learning iterations. These were
determined based on trials with different corpora using a projection
inspection approach [54]. As the perplexity parameter describes the
expected minimum number of neighbors each point should have, to en-
sure a convergence with few errors (i.e., separable while preserving ob-
ject distances), it is essential to maintain a partly overlapping set of de-
scriptors in the enriched concept vectors. In the following, we describe
the three-step process for computing semantic concept neighborhoods.

(1) Corpus and Topic Keyword Insertion – In order to consider
all relevant words in the projection, in this �rst step, we combine all
corpus and topic keywords (each represented by their word embedding
vector) with all extracted concepts (represented by their respective
concept vectors). We use all word embedding vectors in the second
step to determine the initial positioning of the concept vectors. These
positions, in turn, are used as anchors in the third step.

To ensure that the concept space is representative of the analyzed
corpus, in this step we additionally assign the top twenty keywords
from each document to their closest concept vector as descriptors. In
our example, we might add keywords likecompanyor spendingto

~taxes, as well asaffordableto ~medical. Note that this technique is
independent of the concrete topic modeling approach, as long as each
topic is represented by a keyword vector and each document is assigned
to a topic. In this paper, we use theIncremental Hierarchical Topic
Model(IHTM) [16] throughout, as it is deterministic and provides the
required topic-document-keyword hierarchy.

(2) Initial Concept-Anchor Setting – To meaningfully initialize
the t-SNE projection, in this step we computef x,yg-coordinatesfor all
extracted concepts and set these as anchors for the projection in the next
step. We determine these coordinates based on a run of t-SNE on the
complete set of word vectors in the corpus. This �rst run uses random
initial positions for the words as it is only employed to determine a
meaningful spatialization for the semantic concepts. Therefore, other
than thef x,yg-coordinatesfor the concepts, the word positions of this
run are discarded and recalculated in the next step.

(3) t-SNE Reduction – To retain a stable projection after t-SNE
convergence, in this step, we use the previously determined concept
positions as anchors. We then run t-SNE a second time to determine
thef x,yg-coordinatesfor all word vectors in the space. In later steps,
when users edit and change the concept hierarchy, we re-run this step
on-demand to update the concept space. In our example, each of the

two concept vectors, as well as their associated descriptors have a
determined position asf x,yg-coordinatesin the 2D space.

3.3 Concept Hierarchy Building

Based on the neighborhoods determined by the word embedding pro-
jection, in this step, we build theconcept hierarchy relations, getting
rid of descriptor overlap by assigning each descriptor to only one con-
cept. This is achieved based on the following four-step process:

(1) Parameter and Constraint Setting – The abstraction level of
the concept space has a considerable impact on the visual analysis and
re�nement process. We therefore present users with a choice of dif-
ferent entry points in the visual analytics interface. We provide non-
overlapping level-of-abstraction sliders to adjust thesemantic abstrac-
tion levelsfor concepts and super concepts. For example, Figure 3
shows three out of �ve abstraction levels for concepts.

The parameters chosen to determine these abstraction levels are two-
fold: The minimum semantic cosine similarity thresholdesimilarity, and
the minimum number of descriptors or concepts in a neighborhood
eneighborhood. By default the similarity threshold is
set toesimilarity = 0:4, and the neighborhood param-
eter is set toeneighborhood= 6 for concepts and to
1:5� eneighborhoodfor super concepts. Changing the
abstraction slider adjustseneighborhood, directly resulting in a higher or
lower level of abstraction. Based on these parameters we perform a hi-
erarchical, density-based clustering to obtain the concept hierarchy, as
described in the next steps.

(2) Semantic Similarity Update – Beside the word positioning, to
perform the hierarchical clustering, we use the above mentioned se-
mantic similarity. We keep words inside the same cluster (i.e., concept)
if they are similar with respect to theircosine similarity. We check
this at two points during clustering. First, when deciding which words
could initially form a cluster using theesimilarity threshold. Secondly,
when clusters overlap, only clusters which have a high word-embedding
coherence are merged, Otherwise, all overlapped members are redis-
tributed to their most similar cluster. The word-embedding coherence
de�nes the threshold for the minimal acceptable inter-cluster coherence
on the current abstraction level, and is dependant on theesimilarity and
the current concept abstraction level. Hence, updating the semantic
similarity based on theesimilarity threshold is essential to ensure a co-
herent semantic concept hierarchy. In our example, the wordsystem
and the conceptmedicalmight not meet theesimilarity threshold.

(3) Quadtree Mesh Generation – The sec-
ond criterion used in the clustering is neighbor-
hood preservation. Based on thef x,yg-coordinates
previously obtained for each word, we generate a
quadtree[24] mesh, such that every word is po-
sitioned in its own quadrant. The quadtree recur-
sively partitions the 2D space into squares, where
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