Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution

Contributors

Mennatallah El-Assady, Fabian Sperrle, Oliver Deussen, Daniel Keim, and Christopher Collins

Abstract

To effectively assess the potential consequences of human interventions in model-driven analytics systems, we establish the concept of speculative execution as a visual analytics paradigm for creating user-steerable preview mechanisms. This paper presents an explainable, mixed-initiative topic modeling framework that integrates speculative execution into the algorithmic decision-making process. Our approach visualizes the model-space of our novel incremental hierarchical topic modeling algorithm, unveiling its inner-workings. We support the active incorporation of the user’s domain knowledge in every step through explicit model manipulation interactions. In addition, users can initialize the model with expected topic seeds, the backbone priors. For a more targeted optimization, the modeling process automatically triggers a speculative execution of various optimization strategies, and requests feedback whenever the measured model quality deteriorates. Users compare the proposed optimizations to the current model state and preview their effect on the next model iterations, before applying one of them. This supervised human-in-the-loop process targets maximum improvement for minimum feedback and has proven to be effective in three independent studies that confirm topic model quality improvements.

Publications

  • M. El-Assady, F. Sperrle, O. Deussen, D. Keim, and C. Collins, “Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution,” IEEE Transactions on Visualization and Computer Graphics, 2018.
    [Bibtex] [PDF] [URL]
    @Article{ela2018b,
      author = {Mennatallah El-Assady and Fabian Sperrle and Oliver Deussen and Daniel Keim and Christopher Collins},
      journal = {IEEE Transactions on Visualization and Computer Graphics},
      publisher = {IEEE},
      title = {{Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution}},
      year = {2018},
      URL = {vialab.science.uoit.ca/wp-content/papercite-data/pdf/ela2018b2.pdf}
    }

As seen on SpecEx

Video

Acknowledgements

Research

Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution

ThreadReconstructor: Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics

Detecting Negative Emotion for Mixed Initiative Visual Analytics

EduApps – Supporting Non-Native English Speakers to Overcome Language Transfer Effects

Metatation: Annotation as Implicit Interaction to Bridge Close and Distant Reading

DataTours: A Data Narratives Framework

Perceptual Biases in Font Size as a Data Encoding

Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework

Abbreviating Text Labels on Demand

NEREx: Named-Entity Relationship Exploration in Multi-Party Conversations

ConToVi: Multi-Party Conversation Exploration using Topic-Space Views

PhysioEx: Visual Analysis of Physiological Event Streams

Using Visual Analytics of Heart Rate Variation to Aid in Diagnostics

Off-Screen Desktop

PivotSlice

Reading Comprehension on Mobile Devices

#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media

Optimizing Hierarchical Visualizations with the Minimum Description Length Principle

Lexichrome

SentimentState: Exploring Sentiment Analysis on Twitter

Facilitating Discourse Analysis with Interactive Visualization

DimpVis

Glidgets

TandemTable

Simple Multi-Touch Toolkit

Exploring Text Entities with Descriptive Non-photorealistic Rendering

Investigating the Semantic Patterns of Passwords

Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations

Parallel Tag Clouds to Explore Faceted Text Corpora

VisLink: Revealing Relationships Amongst Visualizations

DocuBurst: Visualizing Document Content using Language Structure

Tabletop Text Entry Techniques

Lattice Uncertainty Visualization: Understanding Machine Translation and Speech Recognition

WordNet Visualization

// Where the sidebar information is stored
| © Copyright vialab | Dr. Christopher Collins, Canada Research Chair in Linguistic Information Visualization |