SentimentState: Exploring Sentiment Analysis on Twitter

Contributors

Taurean Scantlebury, Christopher Collins

Abstract

Twitter feeds are a potential source of useful information regarding the state of mind of persons who are the subject of legal or medical assessment. These may include persons suspected of committing crimes or patients that arrive at a hospital for a mental health emergency, for example, attempted suicide. Messages called “tweets” can expose the state of mind of a Twitter user.  Analysts are challenged with creating reports of the online presence of users quickly and efficiently. We present a web-based visualization tool called SentimentState that performs sentiment analysis on tweets from a user’s Twitter account.

SentimentState analyses tweets based on ten emotions (positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise and trust) and creates an interactive time-line graph of the emotional state of the user. It uses a collection of emotion 24,200 word-sense pairs collected from the National Research Council of Canada (NRC). We anticipate that this interactive visualization can have applications throughout, and even beyond, legal and medical assessments, and will provide analysts with timely and relevant information regarding the mood state of clients, patients and other persons under assessment.

Online Demo

Try the visualization yourself!


Acknowledgements

Thanks to Saif Mohammed for providing the NRC Emotion Lexicon for this project.

 

Research

Detecting Negative Emotion for Mixed Initiative Visual Analytics

EduApps – Supporting Non-Native English Speakers to Overcome Language Transfer Effects

Metatation: Annotation as Implicit Interaction to Bridge Close and Distant Reading

DataTours: A Data Narratives Framework

Perceptual Biases in Font Size as a Data Encoding

Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework

Abbreviating Text Labels on Demand

NEREx: Named-Entity Relationship Exploration in Multi-Party Conversations

ConToVi: Multi-Party Conversation Exploration using Topic-Space Views

PhysioEx: Visual Analysis of Physiological Event Streams

Using Visual Analytics of Heart Rate Variation to Aid in Diagnostics

Off-Screen Desktop

PivotSlice

Reading Comprehension on Mobile Devices

#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media

Optimizing Hierarchical Visualizations with the Minimum Description Length Principle

Lexichrome

SentimentState: Exploring Sentiment Analysis on Twitter

Facilitating Discourse Analysis with Interactive Visualization

DimpVis

Glidgets

TandemTable

Simple Multi-Touch Toolkit

Exploring Text Entities with Descriptive Non-photorealistic Rendering

Investigating the Semantic Patterns of Passwords

Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations

Parallel Tag Clouds to Explore Faceted Text Corpora

VisLink: Revealing Relationships Amongst Visualizations

DocuBurst: Visualizing Document Content using Language Structure

Tabletop Text Entry Techniques

Lattice Uncertainty Visualization: Understanding Machine Translation and Speech Recognition

WordNet Visualization

// Where the sidebar information is stored
| © Copyright vialab | Dr. Christopher Collins, Canada Research Chair in Linguistic Information Visualization |