Saliency Deficit and Motion Outlier Detection in Animated Scatterplots


Rafael Veras, Christopher Collins


We report the results of a crowdsourced experiment that measured the accuracy of motion outlier detection in multivariate, animated scatterplots. The targets were outliers either in speed or direction of motion, and were presented with varying levels of saliency in dimensions that are irrelevant to the task of motion outlier detection (e.g., color, size, position). We found that participants had trouble finding the outlier when it lacked irrelevant salient features and that visual channels contribute unevenly to the odds of an outlier being correctly detected. Direction of motion contributes the most to accurate detection of speed outliers, and position contributes the most to accurate detection of direction outliers. We introduce the concept of saliency deficit in which item importance in the data space is not reflected in the visualization due to a lack of saliency. We conclude that motion outlier detection is not well supported in multivariate animated scatterplots.

Supplemental Materials



This research was given a honourable mention at CHI 2019.


  • [PDF] R. Veras and C. Collins, “Saliency Deficit and Motion Outlier Detection in Animated Scatterplots,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019.
    author = {Rafael Veras and Christopher Collins},
    title = {Saliency Deficit and Motion Outlier Detection in Animated Scatterplots},
    year = 2019,
    month = May,
    booktitle = {Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems},
    number = 541




Saliency Deficit and Motion Outlier Detection in Animated Scatterplots

ActiveInk: (Th)Inking with Data

Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution

ThreadReconstructor: Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics

Detecting Negative Emotion for Mixed Initiative Visual Analytics

EduApps – Supporting Non-Native English Speakers to Overcome Language Transfer Effects

Metatation: Annotation as Implicit Interaction to Bridge Close and Distant Reading

DataTours: A Data Narratives Framework

Perceptual Biases in Font Size as a Data Encoding

Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework

Abbreviating Text Labels on Demand

NEREx: Named-Entity Relationship Exploration in Multi-Party Conversations

ConToVi: Multi-Party Conversation Exploration using Topic-Space Views

PhysioEx: Visual Analysis of Physiological Event Streams

Using Visual Analytics of Heart Rate Variation to Aid in Diagnostics

Off-Screen Desktop


Reading Comprehension on Mobile Devices

#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media

Balancing Clutter and Information in Large Hierarchical Visualizations


SentimentState: Exploring Sentiment Analysis on Twitter

Facilitating Discourse Analysis with Interactive Visualization




Simple Multi-Touch Toolkit

Exploring Text Entities with Descriptive Non-photorealistic Rendering

Investigating the Semantic Patterns of Passwords

Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations

Parallel Tag Clouds to Explore Faceted Text Corpora

VisLink: Revealing Relationships Amongst Visualizations

DocuBurst: Visualizing Document Content using Language Structure

Tabletop Text Entry Techniques

Lattice Uncertainty Visualization: Understanding Machine Translation and Speech Recognition

WordNet Visualization

// Where the sidebar information is stored
| © Copyright vialab | Dr. Christopher Collins, Canada Research Chair in Linguistic Information Visualization |