Professional Differences: A Comparative Study of Visualization Task Performance and Spatial Ability Across Disciplines

Contributors

Kyle Wm Hall, Anthony Kouroupis, Anastasia Bezerianos, Danielle Albers Szafir, and Christopher Collins

Abstract

Problem-driven visualization work is rooted in deeply understanding the data, actors, processes, and workflows of a target domain. However, an individual’s personality traits and cognitive abilities may also influence visualization use. Diverse user needs and abilities raise natural questions for specificity in visualization design: Could individuals from different domains exhibit performance differences when using visualizations? Are any systematic variations related to their cognitive abilities? This study bridges domain-specific perspectives on visualization design with those provided by cognition and perception. We measure variations
in visualization task performance across chemistry, computer science, and education, and relate these differences to variations in spatial ability. We conducted an online study with over 60 domain experts consisting of tasks related to pie charts, isocontour plots, and 3D scatterplots, and grounded by a well-documented spatial ability test. Task performance (correctness) varied with profession across more complex visualizations (isocontour plots and scatterplots), but not pie charts, a comparatively common visualization. We found that correctness correlates with spatial ability, and the professions differ in terms of spatial ability. These results indicate that domains differ not only in the specifics of their data and tasks, but also in terms of how effectively their constituent members engage with visualizations and their cognitive traits. Analyzing participants’ confidence and strategy comments suggests that focusing on performance neglects important nuances, such as differing approaches to engage with even common visualizations and potential skill transference. Our findings offer a fresh perspective on discipline-specific visualization with specific recommendations to help guide visualization design that celebrates the uniqueness of the disciplines and individuals we seek to serve.

Publications

  • [IMG]
    K. W. Hall, A. Kouroupis, A. Bezerianos, D. A. Szafir, and C. Collins, “Professional Differences: A Comparative Study of Visualization Task Performance and Spatial Ability Across Disciplines,” CoRR, vol. abs/2108.02333, 2021.
    [Bibtex] [PDF] [URL]

    @article{hal2021,
      author    = {Kyle Wm. Hall and
                   Anthony Kouroupis and
                   Anastasia Bezerianos and
                   Danielle Albers Szafir and
                   Christopher Collins},
      title     = {Professional Differences: {A} Comparative Study of Visualization Task
                   Performance and Spatial Ability Across Disciplines},
      journal   = {CoRR},
      volume    = {abs/2108.02333},
      year      = {2021},
      url       = {https://arxiv.org/abs/2108.02333},
      eprinttype = {arXiv},
      eprint    = {2108.02333},
      timestamp = {Wed, 11 Aug 2021 15:24:08 +0200},
      url    = {dblp.org/rec/journals/corr/abs-2108-02333.bib},
      source = {dblp computer science bibliography, https://dblp.org}
    }

Our featured blog post on this research paper can be found here.

Research

Professional Differences: A Comparative Study of Visualization Task Performance and Spatial Ability Across Disciplines

Card-IT: a Dynamic FSM-based Flashcard Generator for Learning Italian Verb Morphology

Visual Analytics Tools for Academic Advising

Érudit and Vialab Collaboration Projects

Academia is Tied in Knots

Tilt-Responsive Techniques for Digital Drawing Boards

Textension: Digitally Augmenting Document Spaces in Analog Texts

Eye Tracking for Target Acquisition in Sparse Visualizations

Guidance in the human–machine analytics process

H-Matrix: Hierarchical Matrix for Visual Analysis of Cross-Linguistic Features in Large Learner Corpora

A Visual Analytics Framework for Adversarial Text Generation

Design by Immersion: A Transdisciplinary Approach to Problem-Driven Visualizations

Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections

Discriminability Tests for Visualization Effectiveness and Scalability

Saliency Deficit and Motion Outlier Detection in Animated Scatterplots

ActiveInk: (Th)Inking with Data

Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution

ThreadReconstructor: Modeling Reply-Chains to Untangle Conversational Text through Visual Analytics

Detecting Negative Emotion for Mixed Initiative Visual Analytics

EduApps – Supporting Non-Native English Speakers to Overcome Language Transfer Effects

Metatation: Annotation as Implicit Interaction to Bridge Close and Distant Reading

DataTours: A Data Narratives Framework

Perceptual Biases in Font Size as a Data Encoding

Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework

Abbreviating Text Labels on Demand

NEREx: Named-Entity Relationship Exploration in Multi-Party Conversations

ConToVi: Multi-Party Conversation Exploration using Topic-Space Views

PhysioEx: Visual Analysis of Physiological Event Streams

Using Visual Analytics of Heart Rate Variation to Aid in Diagnostics

Off-Screen Desktop

PivotSlice

Reading Comprehension on Mobile Devices

#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media

Balancing Clutter and Information in Large Hierarchical Visualizations

Lexichrome: Text Construction and Lexical Discovery with Word-Color Associations Using Interactive Visualization

SentimentState: Exploring Sentiment Analysis on Twitter

Facilitating Discourse Analysis with Interactive Visualization

DimpVis

Glidgets

TandemTable

Simple Multi-Touch Toolkit

Exploring Text Entities with Descriptive Non-photorealistic Rendering

Investigating the Semantic Patterns of Passwords

Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations

Parallel Tag Clouds to Explore Faceted Text Corpora

VisLink: Revealing Relationships Amongst Visualizations

DocuBurst: Visualizing Document Content using Language Structure

Tabletop Text Entry Techniques

Lattice Uncertainty Visualization: Understanding Machine Translation and Speech Recognition

WordNet Visualization

// Where the sidebar information is stored
| © Copyright vialab | Dr. Christopher Collins, Canada Research Chair in Linguistic Information Visualization |